- t = ArcSin[1/Sqrt[109]]; p =
- FullSimplify@
- Join[{{0, 0}},
- Flatten[Table[{{Cos[k*Pi/3], Sin[k*Pi/3]}, {2 Cos[k*Pi/3],
- 2 Sin[k*Pi/3]}, {3 Cos[k*Pi/3],
- 3 Sin[k*Pi/3]}, {Sqrt[3]*Cos[k*Pi/3 + Pi/6],
- Sqrt[3]*Sin[k*Pi/3 + Pi/6]}, {Sqrt[109]/2*
- Cos[k*Pi/3 + Pi/6 + t],
- Sqrt[109]/2*Sin[k*Pi/3 + Pi/6 + t]}, {Sqrt[109]/2*
- Cos[k*Pi/3 + Pi/6 - t],
- Sqrt[109]/2*Sin[k*Pi/3 + Pi/6 - t]}}, {k, 0, 5}], 1]]; x =
- Select[Table[dd[y], {y, Subsets[p, {4}]}],
- Length@# < 4 && Max[#[[All, 2]]] > 3 &]; {Length@p, Length@x,
- ReverseSortBy[Tally@x, Last]}
复制代码
{37,645,{{{{1,4},{Sqrt[3],1},{2,1}},47},{{{1,4},{2,1},{Sqrt[3],1}},47},{{{1,5},{Sqrt[3],1}},30},{{{Sqrt[3],4},{3,1},{2 Sqrt[3],1}},27},{{{Sqrt[7],4},{2 Sqrt[3],1},{1,1}},24},{{{Sqrt[3],4},{2 Sqrt[3],1},{3,1}},23},{{{Sqrt[7],4},{Sqrt[3],1},{1,1}},20},{{{Sqrt[7],4},{4,1},{Sqrt[3],1}},19},{{{1,1},{Sqrt[7],4},{Sqrt[3],1}},18},{{{Sqrt[3],5},{3,1}},17},{{{Sqrt[7],4},{5,1},{2 Sqrt[3],1}},13},{{{2,4},{4,1},{2 Sqrt[3],1}},13},{{{Sqrt[109]/2,4},{Sqrt[327]/2,1},{Sqrt[109],1}},12},{{{Sqrt[109]/2,4},{Sqrt[109],1},{Sqrt[327]/2,1}},12},{{{Sqrt[109]/2,4},{1,1},{(7 Sqrt[3])/2,1}},12},{{{Sqrt[109]/2,4},{1,1},{(5 Sqrt[3])/2,1}},12},{{{Sqrt[109]/2,5},{Sqrt[327]/2,1}},12},{{{Sqrt[7],5},{Sqrt[21],1}},12},{{{Sqrt[7],4},{1,1},{Sqrt[3],1}},11},{{{2,4},{2 Sqrt[3],1},{4,1}},11},{{{Sqrt[3],1},{Sqrt[7],4},{1,1}},10},{{{Sqrt[3],1},{1,4},{2,1}},10},{{{1,1},{Sqrt[7],4},{2 Sqrt[3],1}},10},{{{2,5},{2 Sqrt[3],1}},9},{{{Sqrt[7],4},{1,1},{2 Sqrt[3],1}},8},{{{Sqrt[7],4},{Sqrt[3],1},{4,1}},7},{{{3,1},{Sqrt[3],4},{2 Sqrt[3],1}},7},{{{Sqrt[109]/2,4},{6 Sqrt[3],1},{19/2,1}},6},{{{Sqrt[109]/2,4},{6 Sqrt[3],1},{17/2,1}},6},{{{Sqrt[109]/2,4},{(7 Sqrt[3])/2,1},{19/2,1}},6},{{{Sqrt[109]/2,4},{(7 Sqrt[3])/2,1},{1,1}},6},{{{Sqrt[109]/2,4},{(5 Sqrt[3])/2,1},{17/2,1}},6},{{{Sqrt[109]/2,4},{(5 Sqrt[3])/2,1},{1,1}},6},{{{Sqrt[109]/2,4},{19/2,1},{6 Sqrt[3],1}},6},{{{Sqrt[109]/2,4},{19/2,1},{(7 Sqrt[3])/2,1}},6},{{{Sqrt[109]/2,4},{17/2,1},{6 Sqrt[3],1}},6},{{{Sqrt[109]/2,4},{17/2,1},{(5 Sqrt[3])/2,1}},6},{{{Sqrt[7],4},{3 Sqrt[3],1},{5,1}},6},{{{Sqrt[7],4},{3 Sqrt[3],1},{4,1}},6},{{{Sqrt[7],4},{2 Sqrt[3],1},{5,1}},6},{{{3,4},{3 Sqrt[3],1},{6,1}},6},{{{3,4},{6,1},{3 Sqrt[3],1}},6},{{{1,1},{Sqrt[109]/2,4},{(7 Sqrt[3])/2,1}},6},{{{1,1},{Sqrt[109]/2,4},{(5 Sqrt[3])/2,1}},6},{{{1,1},{2 Sqrt[3],1},{Sqrt[7],4}},6},{{{3,5},{3 Sqrt[3],1}},6},{{{Sqrt[7],4},{4,1},{2 Sqrt[3],1}},5},{{{Sqrt[3],1},{Sqrt[7],4},{4,1}},5},{{{Sqrt[3],1},{4,1},{Sqrt[7],4}},5},{{{Sqrt[133]/2,4},{5,1},{6 Sqrt[3],1}},4},{{{Sqrt[109]/2,4},{1,1},{6 Sqrt[3],1}},4},{{{(3 Sqrt[13])/2,4},{3,1},{6 Sqrt[3],1}},4},{{{Sqrt[7],4},{3 Sqrt[3],1},{1,1}},4},{{{Sqrt[7],4},{2 Sqrt[3],1},{4,1}},4},{{{Sqrt[7],4},{5,1},{3 Sqrt[3],1}},4},{{{Sqrt[7],4},{4,1},{3 Sqrt[3],1}},4},{{{Sqrt[7],4},{Sqrt[3],1},{5,1}},3},{{{Sqrt[7],4},{5,1},{Sqrt[3],1}},3},{{{2 Sqrt[3],1},{5,1},{Sqrt[7],4}},3},{{{2 Sqrt[3],5},{6,1}},3},{{{Sqrt[133]/2,4},{6 Sqrt[3],1},{5,1}},2},{{{(3 Sqrt[13])/2,4},{6 Sqrt[3],1},{3,1}},2},{{{2 Sqrt[3],1},{Sqrt[7],4},{5,1}},2},{{{Sqrt[3],1},{2,1},{1,4}},2},{{{3,1},{2 Sqrt[3],1},{Sqrt[3],4}},2},{{{2,1},{1,4},{Sqrt[3],1}},2},{{{1,1},{Sqrt[109]/2,4},{6 Sqrt[3],1}},2},{{{3 Sqrt[3],1},{Sqrt[7],4},{1,1}},1},{{{2 Sqrt[3],1},{3,1},{Sqrt[3],4}},1},{{{5,1},{Sqrt[7],4},{3 Sqrt[3],1}},1},{{{5,1},{3 Sqrt[3],1},{Sqrt[7],4}},1},{{{4,1},{Sqrt[7],4},{3 Sqrt[3],1}},1},{{{4,1},{3 Sqrt[3],1},{Sqrt[7],4}},1},{{{1,1},{Sqrt[7],4},{3 Sqrt[3],1}},1},{{{1,1},{Sqrt[3],1},{Sqrt[7],4}},1},{{{3,1},{Sqrt[3],5}},1}}} |