- 注册时间
- 2009-5-22
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 38554
- 在线时间
- 小时
|
楼主 |
发表于 2025-1-3 20:06:01
|
显示全部楼层
我用MATLAB求得的尖角上的稳定状态如下:
H = 5107.5072182050216775844458966333
S = 2963.178504298315242025548166767
x = 174.21214398267014760652871941207
y = 86.888440150482685819608142236456
代码和运行结果如下:
- %MATLAB代码:
- >> syms H S x y
- >> [H S]=solve(0.1*H-0.00001*H^2-0.000005*H*S-x==0,0.25*S-0.00004*S^2-0.00002*S*H-y==0,H,S)
- >> vpa([subs(H,[x,y],[174.213,86.889]);subs(S,[x,y],[174.213,86.889])])
- >> H=real(ans(3)),S=real(ans(7))
- >> x=0.1*H-0.00001*H^2-0.000005*H*S,y=0.25*S-0.00004*S^2-0.00002*S*H
- %上述代码的运行结果如下:
- H =
- (55340232221128653339*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 1)^3 - 438110171750601841448750*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 1)^2 - 2305843009213693952000000000*y + 1844674407370955161600000*x*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 1) + 1383505805528216333475000*y*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 1) + 576460752303423488000000000*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 1))/(922337203685477580800000*y)
- (55340232221128653339*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 2)^3 - 438110171750601841448750*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 2)^2 - 2305843009213693952000000000*y + 1844674407370955161600000*x*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 2) + 1383505805528216333475000*y*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 2) + 576460752303423488000000000*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 2))/(922337203685477580800000*y)
- (55340232221128653339*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 3)^3 - 438110171750601841448750*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 3)^2 - 2305843009213693952000000000*y + 1844674407370955161600000*x*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 3) + 1383505805528216333475000*y*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 3) + 576460752303423488000000000*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 3))/(922337203685477580800000*y)
- (55340232221128653339*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 4)^3 - 438110171750601841448750*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 4)^2 - 2305843009213693952000000000*y + 1844674407370955161600000*x*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 4) + 1383505805528216333475000*y*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 4) + 576460752303423488000000000*root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 4))/(922337203685477580800000*y)
- S =
- root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 1)
- root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 2)
- root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 3)
- root(z^4 - (438110171750601841448750*z^3)/55340232221128653339 + z^2*((1844674407370955161600000*x)/55340232221128653339 + (3228180212899171495075000*y)/55340232221128653339 + 576460752303423488000000000/55340232221128653339) - (4611686018427387904000000000*y*z)/18446744073709551113 + (46116860184273879040000000000*y^2)/55340232221128653339, z, 4)
- ans =
- 2349.6575722908332712148514023534
- 6601.9946579657899493906413443453
- 5107.5072182050216775844458966333 + 11.321684669266507062525010099168i
- 5107.5072182050216775844458966333 - 11.321684669266507062525010099168i
- 471.88579512390400017454358199025
- 1518.4238629461322278871678144932
- 2963.178504298315242025548166767 - 7.521638697686384185979495370697i
- 2963.178504298315242025548166767 + 7.521638697686384185979495370697i
- H =
- 5107.5072182050216775844458966333
- S =
- 2963.178504298315242025548166767
- x =
- 174.21214398267014760652871941207
- y =
- 86.888440150482685819608142236456
复制代码 上面这段代码的注释如下:
>> syms H S x y
%这一行代码是把变量 H、S、x、y 定义成符号
>> [H S]=solve(0.1*H-0.00001*H^2-0.000005*H*S-x==0,0.25*S-0.00004*S^2-0.00002*S*H-y==0,H,S)
%假设x和y已知,求解H和S,使得两种树的增长率均为0,解出来的H和S均为一元四次方程的根,方程的系数里均含有x和y
>> vpa([subs(H,[x,y],[174.213,86.889]);subs(S,[x,y],[174.213,86.889])])
%把x和y赋值为尖角外面的值,代入一元四次方程的系数,然后求解H和S,求解结果均为2个实数和2个虚数
>> H=real(ans(3)),S=real(ans(7))
%把H和S赋值为虚数解的实数部分,得到尖角处两种树稳定时的数量
>> x=0.1*H-0.00001*H^2-0.000005*H*S,y=0.25*S-0.00004*S^2-0.00002*S*H
%把尖角处两种树稳定时的数量代入增长率方程,得到尖角处的砍伐强度x和y
上面这段代码是基于下面的观察结果写出来的:
1. 我发现如果x和y取的是尖角内的值(174.212,86.888),那么解出来的稳定点(H,S)均为实数:
>> vpa([subs(H,[x,y],[174.212,86.888]);subs(S,[x,y],[174.212,86.888])])
ans =
2349.6361404946074689153286260937
6602.0288286952797969994565917793
5109.320703458368442169474332709
5105.6809940184108676901249893832
471.87851997457151404263183568529
1518.4131308980611019381481630018
2961.9784793205720680257482166775
2964.3965364734620281062795146528
上面这个结果说明如果x和y落在可行域内,我们能找到实数的稳定点(H,S)
2. 如果x和y取的是尖角外的值(174.213,86.889),那么(H,S)后面的两组解就跑到虚数上去了:
>> vpa([subs(H,[x,y],[174.213,86.889]);subs(S,[x,y],[174.213,86.889])])
ans =
2349.6575722908332712148514023534
6601.9946579657899493906413443453
5107.5072182050216775844458966333 + 11.321684669266507062525010099168i
5107.5072182050216775844458966333 - 11.321684669266507062525010099168i
471.88579512390400017454358199025
1518.4238629461322278871678144932
2963.178504298315242025548166767 - 7.521638697686384185979495370697i
2963.178504298315242025548166767 + 7.521638697686384185979495370697i
我的理解是:
当x和y移动到可行域的边界上时,两个靠得很近的实数解就会合并成重根
当x和y移动到可行域外面时,这个稳定点(H,S)就飞到虚数上去了
也就是当实数范围内找不到相应的稳定状态(H,S)来对应砍伐强度(x,y)时,这个(x,y)就不在可行域里
因此我猜测重根H=5107、S=2963的值就是夹角处的两种树稳定后的数量
因此把这个重根稳态(H,S)代入增长率方程后,求得的x和y值就是尖角处的砍伐强度值
不知道我理解得对不对呢? |
|