- 注册时间
- 2008-1-17
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 6452
- 在线时间
- 小时
|
楼主 |
发表于 2008-2-22 13:33:20
|
显示全部楼层
中世纪的中国
可以肯定的是,中国(古代)科学所达到的境界是达·芬奇式的,而不是伽利略式的。
——李约瑟
一、引子
1、先秦时代
正当埃及和巴比伦的文明在亚、非、欧三大洲的接壤处发展的时候,另一个完全不同的文明在遥远的东方,也沿着黄河和长江流域发展并散播开来。学者们通常认为,在今天新疆的塔里木盆地和幼发拉底河之间,由于一系列高山、沙漠和蛮横的游牧部落的阻隔,远古时代任何迁徙的可能性都不存在。在公元前2700年到前2300年间,出现了传说中的五帝,之后,相继出现了一系列的王朝。虽说由于刻录文字的竹板不如泥版书和纸草书耐久,但由于中国人勤于记录,仍有相当多的资料流传下来。
与巴比伦和埃及一样,远古时代的中国就有数与形的萌芽。虽说殷商甲骨文的破译仍在进行,但已发现有完整的10进制,至迟在春秋战国时代,又出现了严格的筹算记数,这种记数法分为纵横两种形式,分别表示奇数位数和偶数位数,逢零则虚位以待。关于形,司马迁在《史记》(公元前1世纪)夏本纪(本纪即传记)里记载,“(夏禹治水)左规矩,右准绳”,“规”和“矩”分别是圆规和直角尺,“准绳”则用来确定垂线的器械,或许这算得上是几何学的早期应用。
更为难得的是,与热衷于对哲学和数学理论探讨的希腊雅典学派一样,处于同一个时代的中国战国(公元前475-前221)也有诸子百家,那是盛产哲学家的年代。其中,“墨家”的代表作《墨经》讨论了形式逻辑的某些法则,并在此基础上提出一系列数学概念的抽象定义,甚至涉及到“无穷”。而以善辩著称的名家,对无穷概念则有着更进一步的认识,道家的经典著作《庄子》记载了名家的代表人物惠施的命题“至大无外,谓之大一。至小无内,谓之小一。”此处“大一”是指无限宇宙,“小一”相当于赫拉克利特的原子。
惠施(约公元前370-前310)是哲学家,宋国(今河南)人,当时的声望仅次于孔子和墨子。他曾任魏相15年,主张联合齐楚抗秦,政绩卓著。惠施与以写作《梦蝶》、《逍遥游》闻名的同代哲学家庄周既是朋友,又是论敌,两人关于鱼乐之辩是很著名的辩论。他死后,庄周叹息再无可言之人。惠施涉及数学概念的精彩言论尚有
矩不方,规不可以为圆;
飞鸟之影未尝动也;
镞矢之疾,而有不行、不止之时;
一尺之棰,日取其半,万世不竭;
等等,可以看出,这与早他一个世纪的希腊人芝诺所发明的悖论有异曲同工之妙。惠施的后继者公孙龙以“白马非马”之说闻名,虽然在逻辑学上分开了“一般”和“个别”,却未免有诡辩之嫌了。
可惜的是,名、墨两家在先秦诸子中属于例外,其他包括更有社会影响力的儒、道、法等各家的著作则很少关心与数学有关的论题,只注重治国经世、社会伦理和修心养身之道,这与古希腊学派的唯理主义有很大的差异。始皇帝统一中国以后,结束了百家争鸣的局面,甚至搞了一场臭名昭著的焚书。到汉武帝时(公元前140年)则独尊儒术,名、墨著作中的数学论证思想,均失去进一步发展的机会。不过,由于社会稳定,加上对外开放,经济出现了空前的繁荣,带动数学在实用和算法方向发展,也取得了较大的成就。
2、《周髀算经》
公元前47年,亚历山大图书馆在尤利西斯·凯撒统率的罗马军队攻城时被部分烧毁,他是为了帮助他的情人克娄巴特拉夺取政权。后者是托勒密13世的次女,先后与她的两个弟弟托勒玫13世和14世,以及她和凯撒的儿子托勒密15世共同执政。此时中国正处于第一个数学高峰的上升阶段,即西汉后期。一般认为,中国最重要的古典数学名著《九章算术》就是在那个年代(公元前1世纪)成书的,而最古老的数学著作《周髀算经》的成书应该在此以前。
值得一提的是,对中国古代科学技术史很有研究的英国科学史家李约瑟虽然认同《九章算术》代表了比《周髀算经》更为先进的数学水准,但他却认为,我们对后者所能给出的确切的成书年代比起前者来还要晚两个世纪。显而易见,这是数学史家和考古学家的一大遗憾。李约瑟在其巨著《中国科学技术史》里叹息道,“这是一个比较复杂的问题……书中有部分结果是如此古老,不由得相信它们的年代可以追溯到战国时期。”
《周髀算经》不仅成书的年代无法考证,连作者也不详,这与《几何原本》的命运有别。这部著作中最让人感兴趣的数学结果有两个。一个当然是勾股定理了,即关于直角三角形的毕达哥拉斯定理,该定理的得出至少是在毕氏在世(公元前6世纪)以前,但是没有欧几里得在《几何原本》之第一卷命题47中所提供的证明。有意思的是,该定理是以记载西周初年(公元前11世纪)政治家周公与大夫商高讨论勾股测量的对话形式出现的。
周公是文王之子,武王之弟。武王卒后,他又摄政,亲自平定了叛乱,7年之后还政于成年的成王。商高答周公问时提到“勾广三,股修四,径五”,这是勾股定理的特例,因此它又被称为商高定理。书中还记载了周公后人的一段对话,包含了勾股定理的一般形式:
……以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
不难看出,这是从天文测量中总结出来的规律。在中国古文里,勾和股分别指直角三角形中较短和较长的直角边,而髀的意思是大腿或大腿骨,也是测量日高的两处立表。《周髀算经》中另一个重要的数学结论即所谓的日高公式,它在早期天文学和历法编制中被广泛使用。
此外,书中还有分数的应用、乘法的讨论以及寻找公分母的方法,表明平方根已经被应用了。值得一提的是,该书的对话中还提到了治水的大禹,伏羲和女娲手中的规和矩,这无疑表明已经需要测量术和应用数学了。此外,书中还有几何学产生于计量的个别观点。李约瑟认为,这似乎表明中国人从远古时代起就具有算术和商业头脑,他们对那种与具体数字无关的、单从某种假设出发得以证明的定理和命题所组成的抽象的几何学不太感兴趣。
值得欣慰的是,公元3世纪,三国时代的东吴数学家赵爽用非常优美的方法证明了勾股定理。他是在注释《周髀算经》时运用面积的出入相补法给出证明的。如图所示,直角三角形两条直角边a和b为边的正方形的合并图形,其面积应该为$a^2 +b^2$。如果将该合并图形所含的两个三角形移补到图中所示的位置,将得到原三角形的斜边c为边长的正方形,其面积恰好是$c^2$,故而有
$a^2 + b^2 = c^2$
3、《九章算术》
与《周髀算经》不同的是,《九章算术》虽然作者和成书年份不详,但是基本可以确定,此书是从西周时期贵族子弟必修的六门课程(六艺)之一的“九数”发展而来,并经过西汉时期的两位数学家删补。其中为首的张苍也是著名的政治家,曾为汉文帝的丞相,在位期间亲自制订了律法和度量衡。一般认为,《九章算术》是从先秦至西汉中叶期间经过众多学者编撰、修改而成的一部数学著作。
《九章算术》采用问题集的形式,264个问题分成9章,依次为:方田、栗米、衰分、少广、商功、均输、盈不足、方程、勾股。可以看出,这部书的重点是计算和应用数学,仅有的涉及几何的部分也主要是面积和体积的计算,这与欧几里得的《几何原理》恰好相反。其中的三章栗米、衰分、均输集中讨论了数字的比例问题,这与希腊人用几何线段建立起来的比例论形成了鲜明的对照。“衰分”就是按一定的级差分配,“均输”则是为了解决粮食运输负担的平均分配。
书中最有学术价值的算术问题应该是所谓的“盈不足术”。为求方程$f(x) = 0$ 的根。先假设一个答数为$x_1$,$f(x_1) = y_1$,再假设另一个答数为$x_2$, $f(x_2) = y_2$,求出
$x =(x_1y_2 + x_2y_1) / (y_1+y_2) = (x_2 f(x_1) - x_1 f(x_2)) / (f(x_1) - f(x_2))$
如果f(x)是一次函数,则这个解答是精确的;而对于非线形函数,这个解答只是一个近似值。因此,在今天看来,盈不足术相当于一种线形插值法。
在13世纪意大利数学家斐波那契所著《算经》中有一章讲“契丹算法”,指的就是“盈不足术”,因为欧洲人和阿拉伯人古时候称中国为契丹。可以想见,“盈不足术”是借着丝绸之路,经过中亚流传到阿拉伯国家的,再通过他们的著作传至西方的。值得一提的是,1983年,在湖北张家界一座汉初古墓里出土了一部竹简《算数书》,已经谈到“盈不足术”了,而这本书的成书年代被认为比《九章算术》要早两个世纪。
在代数领域,《九章算术》的记载就更有意义了。“方程”一章里,已经有了线性联立方程组的解法,例如
${(x + 2y + 3z = 26), (2x + 3y + z = 34), (3x + 2y + z =39) :}$
但《九章算术》没有表示未知数的符号,而是把未知数的系数和常数排列成一个如下的矩阵(方程)图表,
$((1,2,3),(2,3,2),(3,1,1),(26,34,39))$
再通过相当于消元法的“遍乘直除”法,把此“方程”前三行转化成只有反对角线上有非零元,即
$((0,0,4),(0,4,0),(4,0,0),(11,17,37))$
从而求得解答。考虑到消元法在西方被称为“高斯消元法”,难怪“方程术”被称为中国数学史上的一颗明珠。
除了“方程术”以外,《九章算术》中提到的另外两个贡献也非常值得称道。一是正负术,即正负数的加减运算法则;二是开方术,甚至有“若开之不尽者,为不可开”的语录。前者说明中国人很早就使用了负数,相比之下,印度人在7世纪才开始,而西方对负数的认识则更晚。后者表明中国人已经知道无理数的存在,可是由于是在“方程术”中遇到的,因此并没有认真对待,这是与重视演绎思维的希腊人不同之处,后者一般不轻易放过一个值得追究的机会。
在《九章算术》对几何问题的处理上,可以看出我们祖先的不足,例如“方田”里的圆面积计算公式表明,对圆周率的估算是3,这与巴比伦人的结果相当。而球体积的计算公式只有阿基米德所获得的精确值的一半,再考虑到圆周率取3,误差就更大了。不过,书中所列直线行的几何形的面积或体积的计算公式,基本上是正确的。《九章算术》的一个特色是,把几何问题算术化或代数化,正如《几何原本》把代数问题几何化。遗憾的是,书中几何问题的算法一律没有推导过程,因此只是一种实用几何。 |
|