找回密码
 欢迎注册
查看: 50389|回复: 20

[原创] 原材料加工问题

[复制链接]
发表于 2010-1-9 17:57:09 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
工厂的仓库体积为1: 1.PNG 在每个单位时间里,工厂可以引进一批原材料(等级为0),把仓库填满: fill.PNG (如果仓库是满的,则无法进行此项操作。) 或者把某个等级的材料加工一次: proc.PNG 材料每加工一次,体积就会减半,等级提升1级。 等级为$n$的材料,每单位体积的价值为$2^n$。 假设该工厂只进行“引入原材料”和“加工某个等级的材料”这两项操作。 问: 是否存在一个操作序列使得$\lim_{t->\infty}s/t>0$? 其中$t$是时间,$s$是仓库中的材料的总价值。 如果存在,该极限值最大是多少?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-6-8 22:01:39 | 显示全部楼层
我把这道题做成了一个游戏。 下载附件解压后就可以玩了。 upgrade.rar (427.84 KB, 下载次数: 7) 点击空白处是“填满仓库”,点击非空白处是“加工”。 游戏的目标是用尽可能少的点击次数引进尽可能多的材料。 对于特定的$t$,它会自动记录最好成绩。 看谁玩的记录最好
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-4-29 21:27:40 | 显示全部楼层
手工操作$t\leq 20$的情况,得到的$s/t$的值如下:

1: 1.0000000000000000
3: 0.5000000000000000
4: 0.4375000000000000
7: 0.3303571428571429
10: 0.2921875000000000
14: 0.2601841517857143
20: 0.2348358154296875

猜想:极限存在且大于$0$。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-4-30 10:19:15 来自手机 | 显示全部楼层
容易看出最优操作,每次要么补满,要么升级最低等级的材料。所以搜索到20步还是比较容易的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-4-30 10:44:22 来自手机 | 显示全部楼层
至于极限我猜测是零,只是很慢
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-4-30 10:46:28 来自手机 | 显示全部楼层
估算变到0.01左右需要2^200次左右的变换
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-4-30 13:41:20 | 显示全部楼层
你是怎么操作的?

极限为什么是$O(1/\log t)$?

没有更好的方案了吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-4-30 13:51:36 来自手机 | 显示全部楼层
极限只是猜测,感觉各种不同方案在阶上不会有太大的区别
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-5-3 15:33:32 | 显示全部楼层
手工操作$t\leq 2000$的情况,得到的$s/t$的值如下:

1: 1.0000000000000000
3: 0.5000000000000000
4: 0.4375000000000000
7: 0.3303571428571429
10: 0.2921875000000000
14: 0.2601841517857143
20: 0.2348358154296875
30: 0.2148714621861776
48: 0.1962810989883413
70: 0.1862673661399854
100: 0.1784434079112382
200: 0.1690430704761923
300: 0.1655674170990377
500: 0.1628229610442237
1000: 0.1603066762577333
2000: 0.1588870558059160

猜测极限为$0.157$左右。

点评

收敛很慢啊,我看有可能更小  发表于 2014-5-3 17:06
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-5-3 19:22:30 | 显示全部楼层
我的理解是否有误, 我算了下前四次加工,算得每增加一次加工,对应的最大价值时间比是
  1. {1,3/2=1.5}
  2. {2,7/8=0.875}
  3. {3,17/24=0.708333}
  4. {4,39/64=0.609375}
复制代码


每一个等级材料对应的体积数的 所有可能情况有:
  1. {1,{{1/2,1/2}}}
  2. {2,{{1/4,3/4,0},{3/4,0,1/4}}}
  3. {3,{{1/8,7/8,0,0},{5/8,0,3/8,0},{3/8,3/8,1/4,0},{7/8,0,0,1/8}}}
  4. {4,{{1/16,15/16,0,0,0},{9/16,0,7/16,0,0},{5/16,5/16,3/8,0,0},{13/16,0,0,3/16,0},{3/16,9/16,1/4,0,0},{9/16,0,7/16,0,0},{1/2,3/8,0,1/8,0},{7/16,7/16,0,1/8,0},{15/16,0,0,0,1/16}}}
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-22 23:40 , Processed in 0.026494 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表