找回密码
 欢迎注册
查看: 44838|回复: 14

[讨论] 求证两个整数坐标序列有公共元素

[复制链接]
发表于 2010-3-29 17:22:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
$(a_1,b_1)$,$(a_2,b_2)$,……,$(a_n,b_n)$是一个整数坐标序列,满足: $1<=a_i<=N$,$1<=b_i<=M$,$i=1,2,3,...,n$ $a_1=1$,$a_n=N$ $|a_i-a_(i+1)|+|b_i-b_(i+1)|=1$,$i=1,2,3,...,n-1$ $(c_1,d_1)$,$(c_2,d_2)$,……,$(c_m,d_m)$是另一个整数坐标序列,满足: $1<=c_i<=N$,$1<=d_i<=M$,$i=1,2,3,...,m$ $d_1=1$,$d_m=M$ $|c_i-c_(i+1)|<=1$,$|d_i-d_(i+1)|<=1$,$i=1,2,3,...,m-1$ 求证:两个坐标序列有公共元素。(即存在$i$、$j$使得$a_i=c_j$、$b_i=d_j$)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-29 17:29:06 | 显示全部楼层
这个好像画图是很显然的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-29 19:07:00 | 显示全部楼层
假想在(ai,bi)点放上围棋黑子。棋盘大小为左下角(1,1),右上角(N,M)。 |ai-ai+1|+|bi-bi+1|=1 ---->(ai,bi)与(ai+1|, bi+1)是相连的棋子。所以从(a1,b1)到(an|, bn)是一串连通的n颗黑棋。由于第1子在第1列,第n子在第N列,所以黑棋连续横跨整个棋盘。 假想在(ci,di)点放上围棋白子, 同理可得白棋连续纵贯整个棋盘。 所以黑白棋龙必然相交。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-3-29 19:35:21 | 显示全部楼层
呵呵,有那么必然吗? 要注意一下$(a_i,b_i)$和$(a_{i+1},b_{i+1})$的关系与$(c_i,d_i)$和$(c_{i+1},d_{i+1})$的关系是不一样的: $|a_i-a_{i+1}|+|b_i-b_{i+1}|=1$ $|c_i-c_{i+1}|<=1$,$|d_i-d_{i+1}|<=1$ 如果第一个序列也像第二个序列那样,结论就不成立了。 如下图所示: cross.PNG 黑棋连续横跨整个棋盘的同时,白棋连续纵贯整个棋盘。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-29 21:45:21 | 显示全部楼层
有那么必然吧 第一个关系从左到右形成横断,考虑第二个关系穿越的那一步即可
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-30 08:14:58 | 显示全部楼层
呵呵,有那么必然吗? 要注意一下$(a_i,b_i)$和$(a_{i+1},b_{i+1})$的关系与$(c_i,d_i)$和$(c_{i+1},d_{i+1})$的关系是不一样的: $|a_i-a_{i+1}|+|b_i-b_{i+1}|=1$ $|c_i-c_{i+1}| KeyTo9_Fans 发表于 2010-3-29 19:35
哦,是我疏忽了,我以为白棋是$|c_i-c_{i+1}|+|d_i-d_{i+1}|<=1$ $|c_i-c_{i+1}|<=1$,$|d_i-d_{i+1}|<=1$, 那么白棋的联络比黑棋要弱一些,但不疏于尖(围棋术语),所以与黑棋还是要相交的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-30 13:34:49 | 显示全部楼层
这个题目直观的用图解方法很显然,通常我们可以直接使用而不需要去证明它。 但是如果要求严格去证明之,可以采用如下方法。 对于给定的折线S:${(c_i,d_i)}$,首先如果它自相交,可以去除一些点,使得余下部分保持原来性质但是不会自相交。此后,非常容易可以将矩形内部所有点被分成3类,S上面部分的点,S上的点和S下面的点。 然后容易证明如果${(a_i,b_i)}$序列中一个点是S上面的,那么下一个点不能是S下面的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-31 20:18:53 | 显示全部楼层
请大家继续,我非常想弄清这个问题。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-3-31 20:41:36 | 显示全部楼层
去除多余的点,使得路径不自相交,这一步做得很好。 可是将矩形内部所有点分$3$类就说不清楚了。 因为路径是可以随便绕的,想绕多复杂就有多复杂。 所以很难说清楚哪些点是上面的,哪些点是下面的。 再下一步,如果一个点是上面的,怎样说明下一个点不能是下面的?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-3-31 22:09:11 | 显示全部楼层
有点难度 等我考虑考虑
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 15:23 , Processed in 0.047894 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表