找回密码
 欢迎注册
楼主: mathe

[擂台] [转载]整数分解为2的幂的和

[复制链接]
发表于 2010-4-1 14:18:54 | 显示全部楼层
22# gxqcn 折煞我也,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-4-1 14:30:30 | 显示全部楼层
检索信息是要点本事的, 这点你确实比我强。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-4-2 08:51:09 | 显示全部楼层
19#的方法中主要问题在于解决下面的问题 也就是给定$a_0,a_1,...,a_h$求$b_0,b_1,...,b_h$使得 $\sum_{t=0}^ha_tv_t(2x)=\sum_{t=0}^hb_tv_t(x)$ 19#中给出了一个$O(h^2)$的算法,如果我们能够降低这个变换的复杂度,那么这个算法复杂度也可以降下来(可以事先使用一些辅助计算)。而我觉得这个变换非常有可能可以有更加低的计算复杂度。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-4-2 09:09:11 | 显示全部楼层
对于函数$f(x)$,我们记$\Delta f(x)=f(x+1)-f(x)$为$f(x)$的一阶差分。 更加普遍的,我们可以记$\Delta^0f(x)=f(x),\Delta^1f(x)=\Delta f(x),...,\Delta^nf(x)=\Delta\Delta^{n-1}f(x)$ 于是我们有对于$t>=k,\Delta^kv_t(x)=v_{t-k}(x)$ 于是对于n次多项式f(x),假设$f(x)=a_0v_0(x)+a_1v_1(x)+...+a_nv_n(x)$ 由于 $v_t(0)=\delta(t,0)={(1,t=0),(0,t>0):}$ 我们对f(x)做k阶差分,将x=0代入,得到 $\Delta^kf(0)=a_k$, 于是对于n次多项式$f(x)$我们有公式 $f(x)=\sum_{t=0}^n\Delta^tf(0)v_t(x)$ 现在我们来计算$v_t(2x)$的各阶差分 它的一阶差分为$v_t(2x+2)-v_t(2x)=v_{t-1}(2x+1)+v_{t-1}(2x)$ 更加一般的,其k阶差分为$\Delta^k(v_t(2x))=\sum_{s=0}^kC_k^sv_{t-k}(2x+s)$ 将$x=0$代入上面表达式得到$\sum_{s=t-k}^kC_k^sC_s^{t-k}$ 于是我们得到通用公式 $v_t(2x)=\sum_{k="floor"(t/2)}^t \sum_{s=t-k}^kC_k^sC_s^{t-k}v_k(x)$ 呵呵,不知道对计算有没有用
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-4-2 09:29:35 | 显示全部楼层
化简了一下,好像是 $b_k=\sum_{t=0}^kC_k^t2^{k-t}a_{t+k}$ 这个公式很简单呀。不过时间复杂度没有变换,倒是那个二维矩阵可以省略,可以改成O(log(n))的空间复杂度
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-4-2 10:12:56 | 显示全部楼层
谁来转篇介绍怎么高效检索信息的文章,使我们也能高效一下
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-4-2 22:36:22 | 显示全部楼层
mathe可以看看这部分,我没有试过。 log(p(2*n)) = 1/(2*L2)*(log(n/log(n)))^2 + (1/2 + 1/L2 + LL2/L2)*log(n) - (1 + LL2/L2)*log(log(n)) + Phi(log(n/log(n))/L2), where L2=log(2), LL2=log(log(2)) and Phi(x) is a certain periodic function with period 1 and a tiny amplitude. Numerically, Phi(x) appears to have a mean value around 0.66. An expansion up to O(1) term had been obtained earlier by Kurt Mahler. (End)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-4-8 12:38:33 | 显示全部楼层
这个贴子的标题太广泛了,没有把要讨论的具体问题说清楚。 所以不能怪别人提出相同的问题。 建议把此贴的标题改为《求把n分解成2的幂之和的方案总数》或者《把n分解成2的幂之和,有多少种分解方法?》。 这样就一目了然地把问题说清楚了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-4-8 22:21:21 | 显示全部楼层
如果要求输出n的2的幂之和具体的和的形式,有没有快一点的算法?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-4-9 15:32:16 | 显示全部楼层
输出具体和的形式,再快也快不到哪里去,它好比是在清点一群羊, 而若只报总数,则可不必一头头的数,可以用加法、乘法等快速实现。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 09:44 , Processed in 0.023470 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表