找回密码
 欢迎注册
楼主: liangbch

[讨论] Toom-Cook 乘法

[复制链接]
发表于 2013-5-8 16:59:29 | 显示全部楼层
9# 云梦 有,就是并行算法。。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-4 16:42:11 | 显示全部楼层
最近学习了下Toom-Cook算法,贴出一些相关的论文。

ToomCook.pdf

103 KB, 下载次数: 13, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

WhatAboutToomCookMatricesOptimality.pdf

249.66 KB, 下载次数: 14, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

iterativeToomCookForVeryUnbalancedMultiplication.pdf

346.62 KB, 下载次数: 5, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

Toom-Cook_8-way_for_Long_Integers_Multiplication.pdf

252.18 KB, 下载次数: 7, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

Integer_and_polynomial_multiplication_ towards_optimal_toom-cook_matrices.pdf

280.28 KB, 下载次数: 11, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

High_degree_Toom_n_half_for_balanced_and_unbalanced_multiplication.pdf

410.53 KB, 下载次数: 14, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

Bodrato2007-OptimalToomCookMultiplicationForBinaryFieldAndIntegers.pdf

312.66 KB, 下载次数: 5, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

Madrid2007-Toom-Cook-inGF2x.pdf

375.93 KB, 下载次数: 5, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

SmallCharacteristicLowDegreeToom.pdf

300.73 KB, 下载次数: 8, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-4 16:52:23 | 显示全部楼层

  论文
  
  作者
  
  摘要
  
  重要性
  
  备注
  
  ToomCook.pdf
  
  Sai Krishna Yedugani
  
  Toom-cook算法入门
  
  中
  
  
  
  WhatAboutToomCookMatricesOptimality.pdf
  
  Marco Bodrato Alberto  Zanoni
  
  讲述Toom算法优化的
  
  高
  
  最有用的矩阵变换序列,可以利用这些数据写出自己的Toom2.5,toom3,toom3.5,toom4,toom4.5,toom5算法
  
  iterativeToomCookForVeryUnbalancedMultiplication.pdf
  
  Alberto Zanoni
  
  讲述非平衡Toom算法的
  
  低
  
  
  
  Toom-Cook_8-way_for_Long_Integers_Multiplication.pdf
  
  Alberto Zanoni
  
  给出一个Toom8路乘法的实现
  
  低
  
  是一个非最优化的实现,效率不Marco BodratoToom8h
  
  Integer_and_polynomial_multiplication_  towards_optimal_toom-cook_matrices.pdf
  
  Marco BodratoAlberto Zanoni
  
  给出查找在Toom算法中interpolation阶段用到的最优矩阵变换序列的方法。
  
  高.
  
  内容相对艰深。
  
  High_degree_Toom_n_half_for_balanced_and_unbalanced_multiplication.pdf
  
  Marco Bodrato
  
  作者提出一种效率很高的高阶Toom6.5, Toom8.5的实现方法。此算法已经在GMP 5.0中实现。
  
  高
  
  有较大的适用价值,欲看懂GMP中Toom6h和TOOM8h算法,必看此文。
  
  Bodrato2007-OptimalToomCookMultiplicationForBinaryFieldAndIntegers.pdf
  
  Marco Bodrato
  
  讲述GF(2)上的多项式乘法的Toom算法
  
  低
  
  
  
  Madrid2007-Toom-Cook-inGF2x.pdf
  
  Marco Bodrato
  
  主要涉及Toom3算法
  
  低
  
  应用于GF(2)上多项式乘法.内容较少,像一个PPT而不像正规论文
  
  SmallCharacteristicLowDegreeToom.pdf
  
  Marco Bodrato
  
  讲优化低阶Toom算法在有限域上的多项式乘法
  
  低
  
  
  

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-1-4 17:00:42 | 显示全部楼层
感谢贴出它们的评价,抽空将仔细阅读一下
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-4 17:26:40 | 显示全部楼层
  在gmp源码树tune目录下运行make,可以build出2个应用程序,其中speed可用来测试一些GMP函数的性能。我特地测试并分析了GMP乘法函数的性能。

说明:
1.硬件 Intel I7-4700HQ @2.40GHz, 8G RAM
2.操作系统,windows7,64bit
3.用MinGW32编译GMP的最新源代码6.1.2,以32位方式编译。
4.我使用命令行 speed -C -E -s size 函数名 来测试GMP函数的运行速度,例
  speed -C -E -s 128 mpn_toom22_mul
  参数说明,-C指定时间的单位为 每个操作步的周期数,-E 指定时间周期的计算方式为总时间/(size*size). 上面的命令表示调用GMP函数mpn_toom22_mul计算2个128个limb的整数的乘法,时间为总始终周期除以(128*128),这里1个limb表示32比特。
5. 测试方法为,同一命令运行3次,取3次中的最小值。
  
用单位时间而不用总时间的好处是可以直观的评价各个函数的性能或者加速比。我首先测试了mpn_mul_basecase函数的性能(见下)s从1000到10000,测试结果显示,平均每步的计算时间稳定在1.51到1.64个时钟周期. 我们取平均值1.55.

speed -C -E -s 1000  mpn_mul_basecase
1000           1.5151
2000           1.5154
3000           1.5093
4000           1.5212
5000           1.5406
6000           1.5437
7000           1.5774
8000           1.5608
9000           1.6486
10000          1.5613

  然后我分别测试当size为 6000-12000之间时,mpn_mul_n和mpn_toom8h_mul性能数据,发现,当size为12000以上时,mpn_mul_n明显更快,这说明,当size为12000以上时,进入FFT算法的势力范围,toom算法的效率明显低于FFT算法,故我只测试size为128到16384之间(size为等比数列,公比为2的8分之1)各个toom函数的性能,各个toom算法的性能指标。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-4 17:31:37 | 显示全部楼层
  1. len        basecase        toom22        toom33        toom44        toom6h        toom8h        toom22        toom33        toom44        toom6h        toom8h
  2. 128        1.55        1.0726        1.0748        1.1168        1.3522        1.5908        1.445086705        1.442128768        1.387893983        1.146280136        0.974352527
  3. 140        1.55        1.0324        0.9877        1.0396        1.247        1.4689        1.501356064        1.56930242        1.490958061        1.24298316        1.055211383
  4. 153        1.55        0.9954        0.9513        1.0017        1.062        1.3515        1.55716295        1.629349311        1.547369472        1.459510358        1.146873844
  5. 166        1.55        0.9695        0.9054        0.9261        1.0478        1.1872        1.598762249        1.711950519        1.673685347        1.479289941        1.305592992
  6. 182        1.55        0.927        0.8554        0.9068        0.947        1.0571        1.67206041        1.812017769        1.709307455        1.636747624        1.46627566
  7. 198        1.55        0.8952        0.8456        0.86        0.8885        1.0031        1.731456658        1.833017975        1.802325581        1.744513225        1.545209849
  8. 216        1.55        0.8637        0.7785        0.8161        0.8144        0.9161        1.794604608        1.991008349        1.899277049        1.90324165        1.691955027
  9. 235        1.55        0.8331        0.7565        0.7663        0.8237        0.8842        1.860520946        2.048909451        2.022706512        1.881753065        1.752997059
  10. 256        1.55        0.7801        0.7568        0.7279        0.7584        0.8001        1.986924753        2.048097252        2.129413381        2.043776371        1.937257843
  11. 280        1.55        0.7597        0.7011        0.697        0.7119        0.7402        2.040279058        2.210811582        2.223816356        2.177272089        2.094028641
  12. 305        1.55        0.7099        0.6973        0.6716        0.6556        0.7185        2.183406114        2.222859601        2.307921382        2.364246492        2.157272095
  13. 332        1.55        0.7171        0.6604        0.6406        0.6483        0.6718        2.161483754        2.347062386        2.419606619        2.390868425        2.307234296
  14. 363        1.55        0.6909        0.6179        0.6133        0.5931        0.6303        2.243450572        2.50849652        2.527311267        2.613387287        2.459146438
  15. 395        1.55        0.6706        0.6121        0.5938        0.5711        0.5969        2.311362959        2.53226597        2.610306501        2.714060585        2.596749874
  16. 431        1.55        0.6458        0.584        0.5438        0.5376        0.5554        2.400123877        2.654109589        2.850312615        2.883184524        2.790781419
  17. 470        1.55        0.6348        0.5544        0.5375        0.517        0.5178        2.441713926        2.795815296        2.88372093        2.998065764        2.993433758
  18. 512        1.55        0.5713        0.5324        0.4921        0.5007        0.4786        2.71311045        2.911344853        3.149766308        3.095666068        3.23861262
  19. 559        1.55        0.5703        0.5282        0.4851        0.4627        0.4627        2.717867789        2.93449451        3.195217481        3.349902745        3.349902745
  20. 609        1.55        0.5504        0.5108        0.4558        0.4478        0.4454        2.816133721        3.034455756        3.400614305        3.461366682        3.480017961
  21. 664        1.55        0.5395        0.491        0.4302        0.4254        0.4136        2.873030584        3.156822811        3.60297536        3.643629525        3.747582205
  22. 725        1.55        0.522        0.4555        0.4091        0.401        0.3964        2.969348659        3.402854007        3.788804693        3.865336658        3.910191726
  23. 790        1.55        0.49        0.4382        0.3906        0.3832        0.3776        3.163265306        3.537197627        3.968253968        4.044885177        4.104872881
  24. 862        1.55        0.4733        0.4322        0.385        0.3653        0.3543        3.274878513        3.586302638        4.025974026        4.243087873        4.374823596
  25. 940        1.55        0.4687        0.425        0.3679        0.348        0.329        3.307019415        3.647058824        4.213101386        4.454022989        4.711246201
  26. 1024        1.55        0.4423        0.4085        0.356        0.3339        0.3176        3.504408772        3.794369645        4.353932584        4.642108416        4.880352645
  27. 1117        1.55        0.4174        0.3939        0.3411        0.3156        0.3031        3.713464303        3.935008886        4.544121958        4.911280101        5.113823821
  28. 1218        1.55        0.4148        0.3808        0.3178        0.2999        0.292        3.736740598        4.070378151        4.877281309        5.168389463        5.308219178
  29. 1328        1.55        0.4066        0.368        0.3112        0.2857        0.2795        3.812100344        4.211956522        4.980719794        5.425271264        5.545617174
  30. 1449        1.55        0.3937        0.3389        0.299        0.2711        0.2646        3.937007874        4.573620537        5.183946488        5.717447436        5.857898715
  31. 1580        1.55        0.381        0.324        0.2857        0.2543        0.2513        4.06824147        4.783950617        5.425271264        6.095163193        6.167926781
  32. 1723        1.55        0.3681        0.3097        0.2714        0.2497        0.2364        4.210812279        5.004843397        5.711127487        6.207448939        6.556683587
  33. 1879        1.55        0.3545        0.3052        0.2653        0.2341        0.22        4.37235543        5.078636959        5.842442518        6.621102093        7.045454545
  34. 2048        1.55        0.3339        0.305        0.2549        0.223        0.2103        4.642108416        5.081967213        6.080816006        6.950672646        7.370423205
  35. 2234        1.55        0.3249        0.2943        0.245        0.2055        0.1953        4.770698677        5.266734625        6.326530612        7.542579075        7.936507937
  36. 2436        1.55        0.3136        0.2847        0.2384        0.1939        0.1897        4.942602041        5.444327362        6.501677852        7.993811243        8.170795994
  37. 2656        1.55        0.3062        0.2731        0.2271        0.1847        0.1805        5.062050947        5.675576712        6.825187142        8.391987006        8.587257618
  38. 2897        1.55        0.2931        0.2624        0.2168        0.1752        0.1687        5.288297509        5.907012195        7.149446494        8.847031963        9.187907528
  39. 3159        1.55        0.2829        0.2514        0.2071        0.1661        0.1586        5.478967833        6.165473349        7.484307098        9.331727875        9.773013871
  40. 3445        1.55        0.2782        0.2406        0.1978        0.1575        0.1488        5.571531272        6.442227764        7.83619818        9.841269841        10.41666667
  41. 3757        1.55        0.2656        0.236        0.1935        0.1492        0.1415        5.835843373        6.56779661        8.010335917        10.38873995        10.9540636
  42. 4096        1.55        0.2519        0.2294        0.1864        0.1416        0.1363        6.153235411        6.756756757        8.315450644        10.94632768        11.37197359
  43. 4467        1.55        0.2453        0.2184        0.179        0.1337        0.1246        6.318793314        7.097069597        8.659217877        11.59311892        12.43980738
  44. 4871        1.55        0.2335        0.2133        0.1728        0.1277        0.1188        6.638115632        7.266760431        8.969907407        12.13782302        13.04713805
  45. 5312        1.55        0.2299        0.2049        0.1658        0.1204        0.1162        6.742061766        7.564665691        9.348612786        12.87375415        13.33907057
  46. 5793        1.55        0.2243        0.1965        0.1579        0.1161        0.1066        6.910387873        7.888040712        9.816339455        13.35055986        14.54033771
  47. 6317        1.55        0.2165        0.1883        0.1515        0.1089        0.1015        7.159353349        8.231545406        10.2310231        14.23324151        15.27093596
  48. 6889        1.55        0.2105        0.1802        0.1444        0.1041        0.0941        7.363420428        8.601553829        10.73407202        14.8895293        16.47183847
  49. 7513        1.55        0.2026        0.1777        0.1423        0.0981        0.0902        7.650542942        8.722566123        10.89248067        15.80020387        17.18403548
  50. 8192        1.55        0.1895        0.1718        0.138        0.0936        0.0858        8.179419525        9.022118743        11.23188406        16.55982906        18.06526807
  51. 8934        1.55        0.186        0.165        0.1335        0.087        0.0794        8.333333333        9.393939394        11.61048689        17.81609195        19.52141058
  52. 9742        1.55        0.178        0.1601        0.1282        0.0851        0.0765        8.707865169        9.681449094        12.09048362        18.21386604        20.26143791
  53. 10624        1.55        0.1737        0.1549        0.1227        0.08        0.0727        8.923431203        10.00645578        12.63243684        19.375        21.32049519
  54. 11586        1.55        0.1708        0.1499        0.1183        0.0745        0.0694        9.074941452        10.34022682        13.10228233        20.80536913        22.33429395
  55. 12634        1.55        0.1635        0.1424        0.112        0.0697        0.0661        9.480122324        10.88483146        13.83928571        22.23816356        23.44931921
  56. 13778        1.55        0.1582        0.1357        0.1081        0.066        0.0615        9.797724399        11.42225497        14.33857539        23.48484848        25.20325203
  57. 15025        1.55        0.153        0.1351        0.1089        0.0621        0.0567        10.13071895        11.47298298        14.23324151        24.95974235        27.33686067
  58. 16384        1.55        0.1439        0.1342        0.1044        0.0594        0.0551        10.77136901        11.54992548        14.8467433        26.09427609        28.13067151
复制代码
上表第2列到第7列(basecase        toom22        toom33        toom44        toom6h        toom8h)为 平均单位时间,时间单位为始终周期,第8列以后为各个Tomm算法相对于basecase乘法的速度,即加速比。

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-4 17:37:42 | 显示全部楼层
使用楼上数据生成的图表

Toom乘法性能图

Toom乘法性能图
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-4 17:51:44 | 显示全部楼层
可以看到,当乘数为16384个limb时,toom8h算法的加速比超过28. 另外,相对于toom22,toom33,toom44,toom6h的加速效果明显高出一大截。这是因为toom6h和toom8h使用新的算法,在系数矩阵转化为单位矩阵时,新的算法所需的步骤更好。下面我简单的分析一下。
一般的,toom-kk算法使用2k-1个插值点。如当k=5是,使用9个插值点,故系数矩阵式一个9X9的方阵,第一行使用插值点0,最后一行使用插值点正无穷,这两行的点已经符合单位矩阵的要求,无需归零化。其它的点共计(2k-3)*(2k-1)个,若每步矩阵变换可将1个点归零(对角线上的元素需要转为1),则大约需要4k*k个步骤,而新的toom6h和toom8h,总是使用成对地使用符号相反的插值点,按照论文High_degree_Toom_n_half_for_balanced_and_unbalanced_multiplication.pdf中的方法,矩阵中相邻的4个点变为1个,将矩阵转化为单位矩阵的步骤大大减小,大约只用常规方法的四分之一。故新的算法加速效应非常明显。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-1-4 21:24:05 | 显示全部楼层
论文下了一个来看,全是英文,这个恼火,真无法。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-1-5 09:05:03 | 显示全部楼层
不但都是英文,而且几乎全是Marco Bodrato写的。意大利人Marco Bodrato是这个算法具体实现的最大贡献者,他研究Toom-Cook算法十年如一日,值得尊敬。GMP5.0以后的Toom-Cook算法的代码也是他写的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-5 06:10 , Processed in 0.028681 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表