找回密码
 欢迎注册
查看: 54995|回复: 27

[讨论] 拿球必胜策略

[复制链接]
发表于 2010-9-5 20:31:12 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
有N个球,两人轮流拿,第一次可以拿1~N-1个,之后后一个可以拿1~k*对方上次拿的个数,拿到最后一个球的获胜。 问什么情况下存在先手必胜、后手必胜或无必胜策略。 已有结果:k=2时对属于菲波那契数列的N先手必败,其余的先手必胜。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-7 09:24:19 | 显示全部楼层
好像结果是除掉前面若干项以后,所以先手负的情况构成的数列可以写成 $f(n+h_k+1)=f(n+h_k)+f(n)$,其中$h_k$是一个适当的只同k有关的数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-7 20:46:15 | 显示全部楼层
引用2楼的数列递推公式,那么$h_k=2*k-3$ k=2时,刚好 f(n+2)=f(n+1)+f(n) 就是菲波那契数列
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-7 20:56:12 | 显示全部楼层
k=2 N=2,3,5,8,13,21,34,55,89,144,233,377,610,987, k=3 N=2,3,4,6,8,11,15,21,29,40,55,76,105,145,200,276,381,526,726, k=4 N=2,3,4,5,7,9,12,15,19,24,31,40,52,67,86,110,141,181,233,300,386,496,637,818, k=5 N=2,3,4,5,6,8,10,12,15,18,22,27,33,41,51,63,78,96,118,145,178,219,270,333,411,507,625,770,948, k=6 N=2,3,4,5,6,7,9,11,13,16,19,23,27,32,38,45,54,63,74,87,103,122,145,172,204,242,287,341,404,478,565,668,790,935, k=7 N=2,3,4,5,6,7,8,10,12,14,16,19,22,26,30,35,40,46,53,61,71,83,95,109,125,144,166,192,222,257,297,343,396,457,528,611,706,815,940, k=8 N=2,3,4,5,6,7,8,9,11,13,15,17,20,23,26,30,34,39,44,50,57,65,74,85,96,109,124,141,161,184,207,233,263,297,336,380,430,487,552,626,711,807,916, k=9 N=2,3,4,5,6,7,8,9,10,12,14,16,18,20,23,26,29,33,37,42,47,53,59,66,74,83,93,105,117,131,147,165,185,208,234,260,289,322,359,401,448,501,560,626,700,783,876,981, k=10 N=2,3,4,5,6,7,8,9,10,11,13,15,17,19,21,24,27,30,33,37,41,46,51,57,63,70,77,85,94,104,115,128,141,156,173,192,213,237,261,288,318,351,388,429,475,526,583,646,716,793,878,972, 经检验:当k<=5时,3楼的式子才成立。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-9-8 06:43:27 | 显示全部楼层
按照上面的数据总结,2楼的猜想是不对的,但是除了2~k+1这些数(原则上1也应该算成必败数)显然地必败之外,后面的两个相邻必败数之差必定也是个必败数,这点还是对的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-9-8 06:58:38 | 显示全部楼层
请检验一下数据,因为新数列$c_i=b_{i+k+1}-b_{i+k}$的元素虽然都在数列$b$中,但是除了开头一部分外后面仍然不断地有重复的数出现。 4# 056254628
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-8 10:09:18 | 显示全部楼层
检验到10^8以内: K=3, n>=5,a[n]=a[n-1]+a[n-4], 共检查55个元素 K=4, n>=8,a[n]=a[n-1]+a[n-6],共检查70个元素 K=5, n>=10,a[n]=a[n-1]+a[n-8],共检查84个元素 K=6, n>=18,a[n]=a[n-1]+a[n-11], 共检查102个元素 K=7, n>=23,a[n]=a[n-1]+a[n-14],共检查119个元素 K=8, n>=31,a[n]=a[n-1]+a[n-17],共检查135个元素 K=9, n>=36,a[n]=a[n-1]+a[n-20],共检查150个元素 K=10, n>=39,a[n]=a[n-1]+a[n-23],共检查165个元素
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-8 10:15:23 | 显示全部楼层
再给个数据, K=20时,从第108个元素开始,满足a[n]=a[n-1]+a[n-60]检查了前319项 K=21时,从第117个元素开始,满足a[n]=a[n-1]+a[n-64]检查了前334项
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-8 12:48:04 | 显示全部楼层
有N个球,两人轮流拿,第一次可以拿1~H个,之后后一个可以拿不超过K*对方上次拿的个数,拿到最后一个球的获胜。 问什么情况下存在先手必胜、后手必胜或无必胜策略。 我们知道对于充分大的H(比如$H>=N$),先手必胜。而且如果对于参数先手必胜,那么对于任意$H'>=H$,也是先手必胜。 于是对于每个N,K组,存在最小的H使得.我们把这个H称为N,K的H函数,记为$H_K(N)$ 于是我们知道,对于原题,如果$H_K(N)=N(N>=2)$,那么先手败,不然先手胜。 所以我们的任务转化为计算函数$H_K(N)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-9-8 12:57:31 | 显示全部楼层
显然$H_K(N)$在$1<=N<=K+1$时有$H_K(N)=N$,同时我们定义$N_K(0)=+infty$ 而且对于任意N>K,我们有性质 $H_K(N)=min{t|1<=t<=N,H_K(N-t)>tK}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 17:30 , Processed in 0.031473 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表