找回密码
 欢迎注册
查看: 41412|回复: 12

[讨论] 不能回到起点

[复制链接]
发表于 2010-11-19 22:22:33 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
上中学时,好像计算机课本上有道题材,大致意思好像是这样说的:   一个圆上有N个点,假如从某一点A开始,先间隔一个点跳跃,再间隔两个点跳跃,再间隔三个点跳跃,以此类推,按这个规律,经过一千次后不会跳跃到起始那个点A上。这个N最小为多少? 当时刚学程序,不懂,后来又没时间学习了(呵呵,因工作谋生呀) 真的有这样的N吗
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-21 20:09:02 | 显示全部楼层
这样的N肯定存在,难点是要求最小值
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-21 21:58:41 | 显示全部楼层
1、如果仅仅要求是作为结果的第1000跳不与起点重合, 那没什么难的. 2、如果是要求过程中的每一跳都不与起点重合, 则可编程来解决。直接计算也可以。 设起点为0,那么第1跳到2,第2跳到5,第3跳到9,...,第n跳到n(n+3)/2,..., 第1000跳到500×1003. 对于第1种题设,就是要找不能整除500×1003的最小N,N=3就可以了。 对于第2种题设,就是要找一个不能整除这个数列中的任何一项的最小N。由于通项公式n(n+3)/2可分解为两项之积,手工找起来也不难。显然,N就是1003之后最小素数1009. 因为对于合数N,二次同余方程n(n+3)/2≡0(mod N)总是存在小于N的解,所以1009以下的合数都不行。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-11-23 23:13:58 | 显示全部楼层
胡版主,太强了。谢谢了。 不过,版主,我原本想问的题目是我的推广的问题: 一个圆上有N个点,假如从某一点A开始,先间隔一个点跳跃,再间隔两个点跳跃,再间隔三个点跳跃,以此类推,按这个规律,经过M次后始终有一个点B不会被经过。 这个M,N最小为多少? 点B存在吗
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-24 04:00:04 | 显示全部楼层
不存在求$M_{min}$的问题, 没有意义 对于给定的$M, N_{min}=(M+3)$之后的最小素数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-11-24 22:03:05 | 显示全部楼层
呵呵,是呀,我写错了,原本想问是说M有最大值吗? 那么我还有三个想法: 1、请问点B是从点A开始后的第几个点,与M和/或N有什么关系吗。 2、N和跳跃方式规定后,点B是固定的吗? 3、有M趋于无穷的点B存在吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-25 18:36:25 | 显示全部楼层
按胡版主的思路,就是个整除的问题,应该不难解决的,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-11-27 07:02:43 | 显示全部楼层
胡版,mjs1wh,两位老师: 为什么你们不能帮我把6楼的答案或分析情况结论写一下呢,我也写不出什么好的问题让大家讨论与分享。不过,这个学生时代的问题一直在我心头呀。 真心希望两位或其它的老师与高手有时间帮我解决下6楼的的问题。期待中。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-11-27 11:37:55 | 显示全部楼层
一、给定B和N后,可求最大M。先解同余方程n(n+3)/2≡B(mod N) 1、方程有解,就有最小正解m(03并且为2的幂时。证明如下: 设第x跳与第y跳会踩到同一点,即x(x+3)/2≡y(y+3)(mod N), 那么 (x-y)(x+y+3)/2≡0(mod N), ………………(有事出去,你自己往下做做看)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-11-27 23:07:16 | 显示全部楼层
好的,我照您说的做下. 但例1:N=7,数列n(n+3)/2(mod7)为2,5,2,0,6,6,0,2,5,2,0,6,6,0,…,即B=1,3,4时永远不会被踩到。 这句话,是不是说,有可能有多个点在一定条件下(或永远)不会被踩到呀

评分

参与人数 1经验 +1 收起 理由
hujunhua + 1 对,有三个盲点

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 17:45 , Processed in 0.024694 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表