- 注册时间
- 2008-1-13
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19820
- 在线时间
- 小时
|
发表于 2011-1-8 23:53:08
|
显示全部楼层
n a(n,n,n)
1 6
2 30
3 174
4 1092
5 7188
6 48852
7 339720
8 2403588
9 17236524
10 124948668
11 913820460
12 6732898800
13 49918950240
14 372104853600
15 2786716100592
16 20955408717396
17 158149624268220
18 1197390368733804
19 9091866006950892
20 69214297980023256
A110706 Number of linear arrangements of n blue, n red and n green items such that there are no adjacent items of the same color. 7
6, 30, 174, 1092, 7188, 48852, 339720, 2403588, 17236524, 124948668, 913820460, 6732898800, 49918950240, 372104853600, 2786716100592, 20955408717396, 158149624268220, 1197390368733804, 9091866006950892, 69214297980023256 (list; graph; listen; history; internal format)
OFFSET
1,1
COMMENTS
The number of circular arrangements is given by A110707 and A110710.
FORMULA
a(n) = 2 *( Sum[k=0..[n/2]] binomial(n-1, k) * ( binomial(n-1, k)*binomial(2n+1-2k, n+1) + binomial(n-1, k+1)*binomial(2n-2k, n+1)) )
PROG
(PARI) a(n)=2*sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1)))
CROSSREFS
Cf. A110707, A110710.
Sequence in context: A026331 A135490 A175925 * A001341 A089896 A057754
Adjacent sequences: A110703 A110704 A110705 * A110707 A110708 A110709
KEYWORD
nonn
AUTHOR
Max Alekseyev (maxale(AT)gmail.com), Aug 04 2005 |
|