找回密码
 欢迎注册
查看: 41326|回复: 14

[提问] 网格点上放棋子

[复制链接]
发表于 2011-1-13 17:18:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
n*n的网格点上放棋子,要求任何3个棋子不共线,那么最多可以放多少个棋子?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 11:19:40 | 显示全部楼层
是个不錯的数学问题,也是一个不错的编程题目。 线怎么定义的,仅指纵、横和对角线方向的斜线,还是包括所有有理斜率的方向? 如果仅指纵横对角线三向,问题相对简单些,若要包括所有有理方向,预计不会有简明的结果。 这两种题设都可以考虑,分别讨论吧。 还有一种考虑,就是把这个n×n棋盘的对边邻接起来,即拓扑等价于轮胎面。这样一来所有斜率的线都是一样长的,结构反而比平面更单一,也许结果会更规则。 编程高手们,谁抛第一块砖(呵呵,应该是玉,我替人谦虚一哈)?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 13:52:04 | 显示全部楼层
hu版看问题总是比较深刻, 正应了那句俗话:站得高,看得远。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-14 16:50:00 | 显示全部楼层
最多肯定不会超过2*n个棋子,因为每一行最多放2个。 问题是2n个棋子能否摆得出来?对于一个具体的n值,只要能举出一个能摆成的例子,就可证明最多是2n。 比如n=2,f(n)=4 n=3, f(n)=6 110 101 011 1表示棋子。 -------------------------------------- 对于较小的n值,可以让电脑来暴力求解,但是n大的话,电脑可能吃不消了。 能不能构造出一种满足题目要求的摆法,使得2n个棋子的摆法成为可能,那么就不需要证明了。 或者暴力求解较小的n值,证明2n的答案是错误的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 18:24:55 | 显示全部楼层
本帖最后由 medie2005 于 2011-1-14 18:28 编辑 ...........
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 18:54:16 | 显示全部楼层
1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 4或5 的一种情形 ,每行每列最多出现两个,1是受限的,而0随着阶数在增多,2n个棋子能摆完吗?呵呵
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-14 19:18:04 | 显示全部楼层
本帖最后由 056254628 于 2011-1-14 19:19 编辑 楼上是4*5的类型, 对于n*m,最多不会超过2*min(n,m) 楼上刚好放了8个棋子,恰好证明了上限值被取到了。 ---------------------------- 而实际上楼上的答案不对,斜线上3点共线了,不符合题目要求
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 19:36:40 | 显示全部楼层
7# 056254628 如果斜线也考虑的话,4*5的一个例子 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 19:49:45 | 显示全部楼层
n=4 -------------- 1010 0101 0101 1010
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 19:55:05 | 显示全部楼层
n=5 ----------- 01010 11000 00101 10001 00110
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 17:48 , Processed in 0.030880 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表