找回密码
 欢迎注册
查看: 12080|回复: 8

[讨论] 能否证明这个方程组有无穷多组解

[复制链接]
发表于 2011-1-14 20:54:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
-b*sin(a+6*t)+n-40.4945=0
-b*sin(a+7*t)+n-40.5696=0
-b*sin(a+8*t)+n-41.0443=0
-b*sin(a+9*t)+n-41.4190=0

在求解这个方程组时,感觉解非常多,能否证明这个方程组有无穷多组解?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-14 21:19:30 | 显示全部楼层
本帖最后由 056254628 于 2011-1-14 21:20 编辑

设 $a1,b1,n1 ,t1$是方程组的一组解,
那么,$a1,b1,n1,t1+2*k*pi$都是方程组的解 ,k属于任何整数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-14 21:48:19 | 显示全部楼层
设 $a1,b1,n1 ,t1$是方程组的一组解,
那么,$a1,b1,n1,t1+2*k*pi$都是方程组的解 ,k属于任何整数。
056254628 发表于 2011-1-14 21:19

如果t取-7~7,在求解时还会有很多组解,还能证明吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-15 09:41:24 | 显示全部楼层
如果t取-7~7,在求解时还会有很多组解,还能证明吗?
forcal 发表于 2011-1-14 21:48

设$ a1,b1,n1,t1$是方程组的一组解,
那么,$a1+2kπ,b1,n1,t1$都是方程组的解 ,k属于任何整数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-15 16:47:49 | 显示全部楼层
谢谢楼上两位!最基本的东西都忘了!

将a和t都限定为0~2pi(6.28),求一下还有几个解,应该是有限个解了吧?

我只能数值求解,不知理论推导能推出几个?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-15 18:14:00 | 显示全部楼层
设u=a+7.5t
-b*sin(u-1.5t)+n=40.4945    式1
-b*sin(u-0.5t)+n=40.5696    式2
-b*sin(u+0.5t)+n=41.0443    式3
-b*sin(u+1.5t)+n=41.4190    式4
式2-式1得   -2b*cos(u-t)*sin(0.5t)=0.0751    式5
式3-式2得   -2b*cos(u)*sin(0.5t)=0.4747      式6
式4-式3得   -2b*cos(u+t)*sin(0.5t)=0.3747    式7

式5+式7得    -2b*sin(0.5t)*(cos(u+t)+cos(u-t))=0.4498
           即-2b*sin(0.5t)*2*cos(u)*cos(t)=0.4498  式8
式6代入式8得    0.4747*2*cos(t)=0.4498
    所以cos(t)=0.4498/(0.4747*2)=0.47377290920581419844112070781546    若0<=t<2*pi,那么t有2解,
       t1=1.0772262149940490008272798975116
                t2=2*pi-1.0772262149940490008272798975116=5.2059590921855374760980068690474
        tan(t)=±1.8587957121697277908778293159514
式7/式5得   cos(u+t)*0.0751 =cos(u-t)*0.3747
    即   0.0751cos(u)*cos(t)-0.0751sin(u)*sin*(t)=0.3747cos(u)*cos(t)+0.3747sin(u)*sin*(t)
          -0.4498*sin*(u)*sin(t)=0.2996cos(u)*cos(t)
      tan(u)=-0.2996/0.4498/tan(t) =-0.66607381058248110271231658514896/tan(t)=±0.35833620995660091634903055212031

      b= -0.4498/(4*sin(0.5t)*cos(u)*cos(t))      
  n=(40.5696+41.0443)/2 +b*sin(u)*cos(0.5t)
---------------------------------------------------------------------
a、t都在0和2pi以内应有有4组解,验证一下是否都对就可以了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-1-15 18:37:05 | 显示全部楼层
6# 056254628
感谢056254628!确实求得了4组解,代码:
  1. !using["fcopt","math"];
  2. f(a,b,n,t,y1,y2,y3,y4)=
  3. {
  4.   y1=-b*sin(a+6*t)+n-40.4945,
  5.   y2=-b*sin(a+7*t)+n-40.5696,
  6.   y3=-b*sin(a+8*t)+n-41.0443,
  7.   y4=-b*sin(a+9*t)+n-41.4190
  8. };
  9. solve[HFor("f"), optrange,0,2*pi,-1e50,1e50,-1e50,1e50,0,2*pi];
复制代码
算法有待改进,需反复求解,得4组解:
1.001499450029047         0.4915300827061889        40.94928398718976         1.077226214994026         5.024295867788081e-015
4.143092103618644         -0.4915300827061838       40.94928398718975         1.077226214994054         5.024295867788081e-015
2.140093205431478         0.4915300826222994        40.94928398713199         5.205959091908552         6.146226145805337e-011
5.281685857150924         -0.4915300827061913       40.94928398718974         5.205959092185513         1.280949133595751e-014
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-17 08:07:39 | 显示全部楼层
7# forcal
Mathematica可以给出任意精度准确的解!!!
四组解, 保留50位精度,{a,b,t,n} 分别是:
{{-2.1400932035609147586637969667258776810633067249051,
-0.49153008270618919640083077724753090756036174814013,
  1.0772262149940490008272798975116339887809997209734,
  40.949283987189751801441152922337870296236989591673}, \

{-1.0014994500288784797988464165536252031338626744700, \
-0.49153008270618919640083077724753090756036174814013, \
-1.0772262149940490008272798975116339887809997209734,
  40.949283987189751801441152922337870296236989591673}, \

{2.1400932035609147586637969667258776810633067249051,
  0.49153008270618919640083077724753090756036174814013, \
-1.0772262149940490008272798975116339887809997209734,
  40.949283987189751801441152922337870296236989591673}, \

{1.0014994500288784797988464165536252031338626744700,
  0.49153008270618919640083077724753090756036174814013,
  1.0772262149940490008272798975116339887809997209734,
  40.949283987189751801441152922337870296236989591673}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-1-17 08:12:17 | 显示全部楼层
8# wayne

准确的解:
$a=\left\{-\text{ArcCos}\left[-\frac{126738209717915290245033631483 \sqrt{\frac{1249}{23402724241}}}{54316855764315064809674563}\right]$,

b=-\frac{4747 \sqrt{\frac{23402724241}{3498}}}{24980000}[/TeX],
t=\text{ArcCos}\left[\frac{2249}{4747}\right][/TeX],
$n=\frac{511456557}{12490000}\right\}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-5-24 12:51 , Processed in 0.044479 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表