数学研发论坛

 找回密码
 欢迎注册
查看: 6380|回复: 16

[提问] 如何用mathematica得到方程组的实数根?

[复制链接]
发表于 2011-2-26 20:39:59 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
方程如下:
NSolve[{x^2 + y^3 == 1, x^4 + y^4 == 2}, {x, y}]
得到的结果如下
{{x -> -0.428653 + 1.42567 I,
  y -> -0.552329 - 1.34942 I}, {x -> -0.428653 - 1.42567 I,
  y -> -0.552329 + 1.34942 I}, {x -> 1.15363,
  y -> -0.691637}, {x -> -1.20097 + 0.0500217 I,
  y -> 0.324147 - 0.698088 I}, {x -> -1.20097 - 0.0500217 I,
  y -> 0.324147 + 0.698088 I}, {x -> 0. + 0.71621 I,
  y -> 1.148}, {x -> 0. - 0.71621 I,
  y -> 1.148}, {x -> 1.20097 - 0.0500217 I,
  y -> 0.324147 - 0.698088 I}, {x -> 1.20097 + 0.0500217 I,
  y -> 0.324147 + 0.698088 I}, {x -> 0.428653 + 1.42567 I,
  y -> -0.552329 + 1.34942 I}, {x -> 0.428653 - 1.42567 I,
  y -> -0.552329 - 1.34942 I}, {x -> -1.15363, y -> -0.691637}}
但是对我来说有用的就是x和y都是实数的解,其余的复数解都没有用,
怎么办呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:04:57 | 显示全部楼层
Clear["Global`*"];(*清除所有变量*)
eq1 = NSolve[{x^2 + y^3 == 1, x^4 + y^4 == 2}, {x, y}] (*求解方程*)
eq2={x,y}/.eq1 (*只保留数据,去掉变量符号*)
eq3 = Im[eq2] (*取得虚部*)
Pick[eq2,eq3,0] (*只提取虚部等于零的数据*)
  1. Clear["Global`*"];(*清除所有变量*)
  2. eq1 = NSolve[{x^2 + y^3 == 1, x^4 + y^4 == 2}, {x, y}] (*求解方程*)
  3. eq2={x,y}/.eq1 (*只保留数据,去掉变量符号*)
  4. eq3 = Im[eq2] (*取得虚部*)
  5. Pick[eq2,eq3,0] (*只提取虚部等于零的数据*)
复制代码
但是我得到的结果是
{{}, {}, {1.15363, -0.691637}, {}, {}, {1.148}, {1.148}, {}, {}, {}, \
{}, {-1.15363, -0.691637}}
这个结果总是与我想得到的要差那么些
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:10:25 | 显示全部楼层
晕,我自己得到结果了,虽然是费了点小脑筋!
Select[eq2, Im[#] == {0, 0} &]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:16:47 | 显示全部楼层
  1. Clear["Global`*"];(*清除所有变量*)
  2. eq1=NSolve[{x^2+y^3==1,x^4+y^4==2},{x,y},10];(*求解方程,并得到10位数字*)
  3. eq2={x,y}/.eq1;(*只保留数据,去掉变量符号*)
  4. answer=Select[eq2,Im[#]=={0,0}&](*根据虚部都等于零提取得到最后的结果*)
复制代码
这下算是完美了,不过总有些自问自答的味道!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:39:11 | 显示全部楼层
再给一个复杂的

Clear["Global`*"];(*清除所有变量*)
eq1=NSolve[{x^2+c^2==4^2,y^2+c^2==5^2,
            2/x==b/c,2/y==a/c,
            a+b==c},{a,b,c,x,y},10] (*求解方程,并得到10位有效数字*)
eq2={a,b,c,x,y}/.eq1 (*只保留数据,去掉变量符号*)
eq3=Select[eq2,Im[#]=={0,0,0,0,0}&](*根根据虚部都等于零的结果*)
(*提取结果都大于零的结果*)
eq4=Select[eq3,(#[[1]]>0&&#[[2]]>0&&#[[3]]>0&&#[[3]]>0&&#[[4]]>0&&#[[5]]>0)&]
  1. Clear["Global`*"];(*清除所有变量*)
  2. eq1=NSolve[{x^2+c^2==4^2,y^2+c^2==5^2,
  3.             2/x==b/c,2/y==a/c,
  4.             a+b==c},{a,b,c,x,y},10] (*求解方程,并得到10位有效数字*)
  5. eq2={a,b,c,x,y}/.eq1 (*只保留数据,去掉变量符号*)
  6. eq3=Select[eq2,Im[#]=={0,0,0,0,0}&](*根根据虚部都等于零的结果*)
  7. (*提取结果都大于零的结果*)
  8. eq4=Select[eq3,(#[[1]]>0&&#[[2]]>0&&#[[3]]>0&&#[[3]]>0&&#[[4]]>0&&#[[5]]>0)&]
复制代码
不知道谁能把eq3和eq4简化一下!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:40:54 | 显示全部楼层
其实五楼的方程组是根据几何关系得到的,不知道谁能看出来?
我当年就参加数学建模,看到了一本教材,就是因为这个感受到了mathematica的强大!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:43:42 | 显示全部楼层
代码总是解析会出问题,老是要把代码解析成公式,郁闷!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:45:47 | 显示全部楼层
五楼的保留20位的求解结果!
{{0.8190941687975817515, 1.0758780371486812001, 1.8949722059462629516,
   3.5226524578350266188, 4.6269947415888808194}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:50:14 | 显示全部楼层
对了,谁能够把五楼的方程组的符号解求解出来,我说的是符号解,不是数值解,并且提取出都大于零的解!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-2-26 21:52:03 | 显示全部楼层
好庞大的求解结果!看来只有mathematica能办到这事情了!
{{1/72 (36 \[Sqrt](33/2 -
         1/2 Sqrt[
          91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
         1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
             3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
             91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
              3 (3 (4019 + 512 Sqrt[19]))^(1/3)])) +
     256 \[Sqrt]((33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))/(91 +
           1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3))) -
     4 \[Sqrt]((91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)) (33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))) -
     4 \[Sqrt]((182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
           3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
           91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
            3 (3 (4019 + 512 Sqrt[19]))^(1/3)]) (33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))) +
     1/2 \[Sqrt]((91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)) (182 -
           1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
           3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
           91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
            3 (3 (4019 + 512 Sqrt[19]))^(1/3)]) (33/2 -
           1/2 Sqrt[
            
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)])))),
  1/72 (36 \[Sqrt](33/2 -
         1/2 Sqrt[
          91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
         1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
             3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
             91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
              3 (3 (4019 + 512 Sqrt[19]))^(1/3)])) -
     256 \[Sqrt]((33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))/(91 +
           1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3))) +
     4 \[Sqrt]((91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)) (33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))) +
     4 \[Sqrt]((182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
           3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
           91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
            3 (3 (4019 + 512 Sqrt[19]))^(1/3)]) (33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))) -
     1/2 \[Sqrt]((91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)) (182 -
           1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
           3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
           91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
            3 (3 (4019 + 512 Sqrt[19]))^(1/3)]) (33/2 -
           1/2 Sqrt[
            91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
             3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
           1/2 \[Sqrt](182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
               3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
               91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
                3 (3 (4019 + 512 Sqrt[19]))^(1/3)])))), \[Sqrt](33/
     2 - 1/2 Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
     1/2 Sqrt[
      182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]]),
  1/144 (144 + 2176/Sqrt[
     91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
      3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
     145/8 Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] +
     1/8 (8789553 - 1119744 Sqrt[19])^(1/3) Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] +
     9/8 (3 (4019 + 512 Sqrt[19]))^(1/3) Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
     1/8 (91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3))^(3/2) +
     16 Sqrt[182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]] -
     1/8 (8789553 - 1119744 Sqrt[19])^(1/3) Sqrt[
      182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]] -
     9/8 (3 (4019 + 512 Sqrt[19]))^(1/3) Sqrt[
      182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]] -
     1/8 (182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
        3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
        91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
         3 (3 (4019 + 512 Sqrt[19]))^(1/3)])^(3/2) +
     17/4 \[Sqrt]((91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)) (182 -
           1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
           3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
           91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
            3 (3 (4019 + 512 Sqrt[19]))^(1/3)]))),
  1/144 (144 + 128/Sqrt[
     91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
      3 (3 (4019 + 512 Sqrt[19]))^(1/3)] +
     145/8 Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
     1/8 (8789553 - 1119744 Sqrt[19])^(1/3) Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] -
     9/8 (3 (4019 + 512 Sqrt[19]))^(1/3) Sqrt[
      91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
       3 (3 (4019 + 512 Sqrt[19]))^(1/3)] +
     1/8 (91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3))^(3/2) -
     16 Sqrt[182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]] +
     1/8 (8789553 - 1119744 Sqrt[19])^(1/3) Sqrt[
      182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]] +
     9/8 (3 (4019 + 512 Sqrt[19]))^(1/3) Sqrt[
      182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
       3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
       91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
        3 (3 (4019 + 512 Sqrt[19]))^(1/3)]] +
     1/8 (182 - 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
        3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
        91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
         3 (3 (4019 + 512 Sqrt[19]))^(1/3)])^(3/2) +
     1/4 \[Sqrt]((91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
           3 (3 (4019 + 512 Sqrt[19]))^(1/3)) (182 -
           1/3 (8789553 - 1119744 Sqrt[19])^(1/3) -
           3 (3 (4019 + 512 Sqrt[19]))^(1/3) + 1024/Sqrt[
           91 + 1/3 (8789553 - 1119744 Sqrt[19])^(1/3) +
            3 (3 (4019 + 512 Sqrt[19]))^(1/3)])))}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-1-20 08:17 , Processed in 0.053172 second(s), 16 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表