找回密码
 欢迎注册
查看: 35502|回复: 16

[提问] 解剖一个数列

[复制链接]
发表于 2011-3-5 00:45:33 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
设数列$C_0(n)=c_0+n^(-1.75)+a*n^(-3.4)$,$n>=1$,其中$c_0$和$a$都是一个常数。 令$A_1(n)=C_0(n)-C_0(n-1)$,$n>=2$ $B_1(n)=[A_1(n)]^{-1/p_1}$,$n>=2$ $C_1(n)=B_1(n)-B_1(n-1)$,$n>=3$ 问题$1$:设$c_1=lim_{n->\infty}C_1(n)$,问当$p_1$取何值时,$c_1$存在且大于$0$? 在$c_1$存在且大于$0$的前提下, 令$A_2(n)=C_1(n)-C_1(n-1)$,$n>=4$ $B_2(n)=[A_2(n)]^{-1/p_2}$,$n>=4$ $C_2(n)=B_2(n)-B_2(n-1)$,$n>=5$ 问题$2$:设$c_2=lim_{n->\infty}C_2(n)$,问当$p_2$取何值时,$c_2$存在且大于$0$? 在$c_2$存在且大于$0$的前提下, 令$A_3(n)=C_2(n)-C_2(n-1)$,$n>=6$ $B_3(n)=[A_3(n)]^{-1/p_3}$,$n>=6$ $C_3(n)=B_3(n)-B_3(n-1)$,$n>=7$ 问题$3$:设$c_3=lim_{n->\infty}C_3(n)$,问当$p_3$取何值时,$c_3$存在且大于$0$? 在$c_3$存在且大于$0$的前提下, 令$A_4(n)=C_3(n)-C_3(n-1)$,$n>=8$ $B_4(n)=[A_4(n)]^{-1/p_4}$,$n>=8$ $C_4(n)=B_4(n)-B_4(n-1)$,$n>=9$ 问题$4$:设$c_4=lim_{n->\infty}C_4(n)$,问当$p_4$取何值时,$c_4$存在且大于$0$? 依次类推,可得数列$A_5(n)$、$B_5(n)$、$C_5(n)$、…… 问题$5$:参数$p_1$,$p_2$,$p_3$,$p_4$,$p_5$,……有什么规律? 不要光给一个答案,最好有过程。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-5 11:02:58 | 显示全部楼层
1# KeyTo9_Fans 这么多的文字,一定很麻烦很难,能用软件给出答案就很不简单了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-3-5 12:51:20 | 显示全部楼层
我就是希望能用软件帮我解决这个问题, 因为C++里面double类型的精度满足不了要求, 算到$C_3(n)$就出现了较大的误差,无法继续算下去了。 ##### 另外,题目有点问题,负数的负无理数次幂没有意义, 所以相邻两项作差的时候应该取绝对值,以保证$A$数列是正的。 现更正如下: $A_1(n)=|C_0(n)-C_0(n-1)|$,$n>=2$ $A_2(n)=|C_1(n)-C_1(n-1)|$,$n>=4$ $A_3(n)=|C_2(n)-C_2(n-1)|$,$n>=6$ $A_4(n)=|C_3(n)-C_3(n-1)|$,$n>=8$ 依次类推。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-5 15:24:26 | 显示全部楼层
$1/{n^a}-1/{(n+1)^a} ~= a/n^{1+a}$ 而我们要求$B_1(n) ~= hn$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-5 17:21:02 | 显示全部楼层
3# KeyTo9_Fans 发现只要p<0,极限c都存在,为1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-6 16:34:14 | 显示全部楼层
$A_1(n)~=1.75*n^-2.75$ 所以要求$p_1=2.75,B(n)~=1.75^-2.75*n,c_1=1.75^-2.75$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-6 16:39:08 | 显示全部楼层
当然如果还需要计算$p_2$,那么就需要使用更高阶的泰勒展开了,比如 $1/{(n+1)^a}=1/n^a*1/{(1+1/n)^a}=1/n^a(1-a/n+{(a+1)a}/{2n^2}-...)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-3-7 13:45:21 | 显示全部楼层
我想到的也是这个方法,可是手算太麻烦。 算到$p_2$就发现要展开的项太多,需要花大量的时间一项一项地算。 所以我希望能借助一些数学软件来完成这个繁琐的计算工作,最终找到参数$p_i$的规律。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-7 14:25:30 | 显示全部楼层
这个就要自己编程了.比如Pari/Gp里面,如果你的指数都是整数,软件本身就可以很容易支持泰勒展开,但是使用了非整数指数,那么就需要自己来小心编程了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-7 16:21:32 | 显示全部楼层
这个$p_i$的规律是很难的.计算前面几项还会比较简单,但是越到后面越不可能计算.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 05:12 , Processed in 0.032560 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表