马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
据说有个教堂(啥名字忘了),站在里面的某个特殊地点能够十分清晰的听到牧师(或者神甫)的讲话。原来教堂内有椭圆弧的壁(不清楚是穹顶还是墙壁),牧师讲话的地方正是椭圆弧的一个焦点,而那个能特别清晰地听到牧师话音的地方是椭圆弧的另一个焦点。为什么椭圆弧具有这种效果,高中生会告诉你:因为椭圆弧的光学(反射)性质。椭圆的那两个定点叫做焦点,正是来源于这个性质(光线会聚点叫做焦点,则是因为会聚的太阳光能把东西烤焦)。
不过,高中生回答的并不完全。为了听清楚牧师的话音,椭圆弧仅有反射聚焦性质是不够的,还必须具有波程相等的性质,即从牧师处(焦点$1$)发出的任意方向的声波碰到椭圆壁反射后再到达焦点$2$处时走过的距离都相等。只有这样,听者听到的才不会是重音(一连串的回声)。“碰巧”的是,椭圆刚好同时具备这两个性质——这才成全了那个教堂的建筑设计师。也许你对这种巧合不以为奇,无动于衷,但是那位建筑师却感天念地,顶礼膜拜,因为他深信这是自己向上帝祈祷的结果,是上帝对虔诚的信徒的眷顾。
上帝的美妙安排,一定有简明的数学背景。
椭圆作为“平面上到两定点的距离之和相等的点的轨迹”,其代数方程\[\begin{equation}\rho_1+\rho_2=C\end{equation}\](`\rho_1` 和 `\rho_2` 是椭圆上任一点到两焦点的距离,`C` 是一个正常数)
表达了椭圆的等波程性,但从中我们完全看不出反射聚焦的性质。
当我们讨论一般椭圆的性质时,`C`作为一个任意常数,它的具体值并不重要,含冗余参数的形式可能不利于问题的解决。使用不含 `C` 的微分形式的等波程方程\[\begin{equation}\dif\rho_1+\dif\rho_2=0\end{equation}\]可能更有利于揭示内在联系。由 `\dif\rho_i=\nabla\rho_i\cdot d\vec{s}` 可得\[\begin{equation}\nabla\rho_1\cdot \dif\vec{s}+\nabla\rho_2\cdot \dif\vec{s}=0\end{equation}\]我们知道,曲线上的反射定律的微分方程为\[\begin{equation}\tau_1\cdot \dif\vec{s}-\tau_2\cdot \dif\vec{s}=0\end{equation}\]这里`\tau_1,\tau_2`分别为入射光矢量和反射光矢量。
梯度$\grad\rho$有一个特殊的几何解释:如果动点$P(x,y)$到定点$A$的距离为$\rho(x,y)$,那么$\grad\rho$就是$AP$方向的单位向量。因此\[\nabla\rho_1=\tau_1,\nabla\rho_2=-\tau_2\]代入(3)式后恰好得到(4)式, 表达了椭圆的反射聚焦性质。
`\dif\rho_i=\nabla\rho_i\cdot \dif\vec{s}`将椭圆的等波程方程(2)和反射聚焦方程 (3)等价起来,合二为一。
上帝的秘密原来如此。
圆也是一个简单的聚焦镜,从圆心发出的光线会重新会聚于圆心。作为“到定点的距离等于定长的点的轨迹”,圆的代数方程
$\rho=C$
表达了等波程性,相应的微分方程连等式
\[\dif \rho=\nabla\rho\cdot \dif \vec{s}=0\]同样将等波程性和反射聚焦性等价连接起来。
仿佛,从一个点光源同时发出的各个方向的光子有一种约定:今后若有机会经过同一个地点,一定要同时达到,再次聚首。
光子之约,诚可信乎?
让我们再来看2个如约的例子。
图1为两个同轴的抛物面镜。从焦点$F_1$发出的光线先后经两抛物面镜反射会聚于$F_2$。光程恒等于两准线的距离。
图1
图2为1个椭圆与一个双曲线正对放置。$F_1$和$F_3$是双曲线的焦点,$F_2$和$F_3$是椭圆的焦点。从$F_1$发出的光线先后经双曲线和椭圆反射后会聚于$F_2$,光程恒为椭圆长轴与双曲线实轴之差。
此例中双曲线退化为直线时是比较简单的情形($F_1$与$F_3$关于直线对称)。
图2
一个容易想到的违约例子是图3所示的不规则齿轮,从圆心发出的光线从齿面上反射回来首次聚焦于圆心的时间,各个扇区彼此不同:
图3
图3的违约是因为反射曲线是“拼凑”的。我们不讨论这种“拼凑”的情况(但是可以讨论“拼凑”的定义)。
图4
图4所示为一段圆弧$C$和它的一条校正曲线$L$,从$F_1$发出的光线先后经$C$和$L$反射后聚焦于$F_2$。($L$可以看作单向镜,即从左侧射到$L$上的光线会完全透过$L$射到$C$上,而从右侧射到$L$上的光线会完全反射。)
请问,这种情况下光子仍然守约吗?类似这样的一般情况呢?
从一个点光源发出的扩散角为A的光束经过若干非拼凑曲线反射后聚焦了,光子之约仍然有效吗?
掺入折射呢?(掺入折射时光程以时间计,即同时就行)。甚至图5所示的极端情况下,光子之约仍然有效吗?
图5 光在密度不均匀的空气中发生弯曲,产生海市蜃楼现象。 |