找回密码
 欢迎注册
查看: 41316|回复: 14

[原创] 年龄为出生年份的数码之和——用mathcad解趣味数学题

[复制链接]
发表于 2011-6-22 08:40:46 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
这是一个趣味智力题目,同类题目流行已久,老朽一时心血来潮,用mathcad14编写了一个通用的编程板程序,供朋友们欣赏。
年龄为出生年份的数码之和1.jpg
年龄为出生年份的数码之和2.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-6-24 06:36:21 | 显示全部楼层
没看明白老人家的答案,我也给一个答案,答案如下: 1991 2011年的年纪是20岁,似乎只有这一个答案, 不过你的答案与我的似乎很不一样呀。 Mathematica的代码如下: (*2011年的年龄等于出生年份的数字的和* ... mathematica 发表于 2011-6-23 11:07
老朽不懂Mathematica,但2楼的答案仅仅是整个一组答案的一个特例,这种问题有无穷多答案,所以原问题才给出了一个限制,(30——40岁之间)。 比如,11岁这个答案,因为出生年分为 2011-11=2000 ,年份数码和 2+0+0+0=2,岁数数码和 1+1=2,符合题意要求,所以是正确答案。同理 38岁 这个答案 ,因为它满足 出生年份=2011-38=1973, 而 1+9+7+3=20 ,2+0=2 ,岁数数码和 3+8 =11 1+1=2 ,符合题意要求,再加上38岁这个特解,符合题给的限制,所以他才是我们寻求的答案。 前面我们用 mathcad14 为我们给出了所有100岁以内的答案, 我想,Mathematica 一定能给出一定值域内的全部解的,就看使用者怎么驾驭它了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-6-24 07:29:21 | 显示全部楼层
本帖最后由 zpz77777 于 2011-6-24 07:33 编辑 补充说明: mathcad 是图形界面,其输出的嵌套数组的含意、读法、对不熟悉他的阅读者,有些隔膜,为此我把输出矢量加以注解在这里补贴出来,希望能收到一目了然的效果。
答案读法.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-24 11:13:58 | 显示全部楼层
没大看懂题目。比如第一个2009年出生的,他的年份的数字相加是11啊。怎么是两岁呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-24 12:09:11 | 显示全部楼层
老先生算的是“年龄的数码终极和等于出生年份的数码终极和”。 终极和,就是叠代求和,直到1位数。等价于模9同余。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-6-24 19:04:28 | 显示全部楼层
本帖最后由 zpz77777 于 2011-6-24 19:06 编辑
老先生算的是“年龄的数码终极和等于出生年份的数码终极和”。 终极和,就是叠代求和,直到1位数。等价于模9同余。 hujunhua 发表于 2011-6-24 12:09
一语中的!!! 我那个小程序,就是利用的“模9同余”。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-6-24 22:49:58 | 显示全部楼层
但是结果与你当初要求的不同。题目的要求是 Ages=∑digits(2011-Ages) 您的搜索程序得到的是Ages≡∑digits(2011-Ages)(mod9) 两者并不等价,您应该从搜索结果中挑选满足原等式的解。您只顾前行,忘了回头了。 Ages≡∑digits(2011-Ages)(mod9)可以简单解得Ages≡2(mod9), 何劳搜索程序。由于0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-6-25 06:46:12 | 显示全部楼层
本帖最后由 zpz77777 于 2011-6-25 07:10 编辑
但是结果与你当初要求的不同。题目的要求是 Ages=∑digits(2011-Ages) 您的搜索程序得到的是Ages≡∑digits(2011-Ages)(mod9) 两者并不等价,您应该从搜索结果中挑选满足原等式的解。您只顾前行,忘了回头了。 ... hujunhua 发表于 2011-6-24 22:49
1、老朽一直认为对一个整数求其各位数码的和,就是求他各位数码的“终极和”,二者是等价的。此类年龄问题所要求的“出生年份数码和”就是它的“终极和”。似乎是“约定俗成”的。正是建立在这个认识基础上,才会有本题说明中的“利用同余理论的解答简洁而巧妙:任何一个正 整数除以9所得的余数,与这个数的数码之和除以9所得的余数相等。”的论断出现,有此论断的补充,再在题目中把“数码和”改为“数码终极和”是不是就可以说得通了? 2、mathcad 似乎没有 digits 语句,所以无法做到“强大的mathematica”那么简单直接, 3、“无穷多解”这个断语是老朽误下,确如先生所说,对于2011来说,他只有223个解。 老朽并非数学专业人士,只是个爱好者而已,还望多多指教。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-6-25 08:08:16 | 显示全部楼层
8# zpz77777 老朽又想了一下,觉得整个问题出在老朽题目叙述不够严格上,这个题目老朽设定数字之后,由于假定是“各位数码终极和”,所以必定有多解,才增加一个“30——40之间”限制条件,但如果不用“终极和”这个假定,她就只能是 1+9+9+1=20 即20岁,这一个答案才合格,可惜这个答案不在30——40之间,也是不合题意的,所以要行得通,只有在题中限定“终极和”才可以。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-10-5 17:13:49 | 显示全部楼层
zpz77777 发表于 2011-6-24 06:36
老朽不懂Mathematica,但2楼的答案仅仅是整个一组答案的一个特例,这种问题有无穷多答案,所以原问题才给 ...

总算看明白你题目的意思了!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 21:17 , Processed in 0.027875 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表