找回密码
 欢迎注册
查看: 33084|回复: 8

[原创] (尺规作图)正方形的3个顶点到其内某点的距离分别为1, 2, 3,求作该正方形。

[复制链接]
发表于 2011-8-29 12:57:22 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
已知单位线段OA, 求作正方形ABCD,使得OB=2,OC=3.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-8-29 14:57:30 | 显示全部楼层
兔八哥在哪里见过类似的题吧。 这题称为原创不免有点抄窃,我见过的原题是已知三个距离1,2,3,要求正文形的面积。 改成尺规作图题后称为“改编”或许更恰当,但是郭老板没安这个选项,呵呵,怪不得我啦。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-8-29 16:18:23 | 显示全部楼层
主题帖的内容漏掉了标题中关于“点在正方形内”的条件,所以可能有两解,即点在正方形外可能还有一解。这是突破原题的地方。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-8-30 08:33:21 | 显示全部楼层
也许可分两步走: 1、用解析几何解方程组,得到正方形边长及O点相对坐标; 2、尺规作图。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-8-31 09:34:11 | 显示全部楼层
本帖最后由 hujunhua 于 2011-8-31 11:59 编辑 有一个几何定理:任一点到矩形对角顶点距离的平方和相等。 在平面几何,以本题例,即 $OA^2+OC^2=OB^2+OD^2$, 立得$OD^2=1^2+3^2-2^2=6$ 建立坐标系XOY,使x轴平行于AB,并使顶点A处于正方形的左下角。 设A(x,y), 正方形的边长为Z, 则B(x+z, y), C(x+z, y+z), D(x, y+z) 记OA=a, OB=b, OC=c, OD=d, 记$e^2={a^2+c^2}/2={b^2+d^2}/2$ 仅以勾股定理建立3个方程: $x^2+y^2==a^2$ $(x+z)^2+y^2==b^2$ $x^2+(y+z)^2==d^2$ 消去x和 y得到关于z的方程 $(z^2-e^2)^2==(ac)^2+(bd)^2-e^4$ 所以$z^2=e^2+-\sqrt{(ac)^2+(bd)^2-e^4}$ 将$a,b,c,d=1,2,3,\sqrt6$代入可得$z^2=5+-2\sqrt2$ 原题以正方形面积为目标,原来是因为关于边长的方程是偶4次方程,面积则正好是2次方程! 从结果可知,不是任意满足首行定理的(a,b,c,d)都能构成一个正方形,必须$(ac)^2+(bd)^2>=e^4$方可。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-9-2 08:17:28 | 显示全部楼层

13#两根的界线

13#部分实现了12#的设想。但是出现的两根如何分别呢? 换个提法,固定正方形ABCD。正方形所在平面上的任一点O,在什么区域使得$z^2=e^2+\sqrt{(ac)^2+(bd)^2-e^4}$, 在什么区域使得$z^2=e^2-\sqrt{(ac)^2+(bd)^2-e^4}$, 两者的界线是什么? 9#粗略地提了一下,说其一O点在正方形内,其二O点在正方形外,界线真的是正方形的边么?。 显然,界线就是二重根的轨迹,即$z_{1,2}=e$, $(ac)^2+(bd)^2=e^4$. 由z=e得$\sqrt{a^2+c^2}=\sqrt{b^2+d^2}=\sqrt{2}z=AC=BD$(正方形对角线),可见点O在正方形的外接圆上。 即界线为正方形的外接圆; O在圆外时,$z^2=e^2+\sqrt{(ac)^2+(bd)^2-e^4}$, O在圆内时,$z^2=e^2-\sqrt{(ac)^2+(bd)^2-e^4}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-9-6 19:13:09 | 显示全部楼层

RE: 原题及其解答

正方形123.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-9-6 21:26:45 | 显示全部楼层

RE: 如果题目不给出图形,就得考虑点在正方形外接圆外的情形

正方形123外.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-9-7 08:24:30 | 显示全部楼层
我觉得有时候的“如图”仅仅是个草图或参考图,线段不要求对应成比例,角度也不要求那么精确, 所以,如果不明确指明“点O在正方形ABCD内”的话,应该考虑其可能在正方形之外的情形。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 10:18 , Processed in 0.028303 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表