找回密码
 欢迎注册
楼主: KeyTo9_Fans

[转载] 攻防博弈的不同版本和纳什均衡策略

[复制链接]
发表于 7 天前 | 显示全部楼层
KeyTo9_Fans 发表于 2025-4-30 22:05
回贴里给出的解是【“轰对轰”可以相互抵消,双方各扣1点能量后,游戏继续(而不是同归于尽,平局)】的版 ...

Singular的数值解:

[6]:
   [1]:
1
   [2]:
0
   [3]:
0
   [4]:
0.5
   [5]:
0.5322164753917473785730130135837516764153
   [6]:
0
   [7]:
0.4677835246082526214269869864162483235847
   [8]:
0.2338917623041263107134934932081241617924
   [9]:
0.5435599392114846833945392592447825794875
   [10]:
0
   [11]:
0.4564400607885153166054607407552174205125
   [12]:
0.1067575702040283885142929385064802401963
   [13]:
0.3333333333333333333333333333333333333333
   [14]:
0
   [15]:
0.6666666666666666666666666666666666666667
   [16]:
0
   [17]:
0.6767027602640444037698408890552034157298
   [18]:
0.3232972397359555962301591109447965842702
   [19]:
0
   [20]:
0.7661082376958736892865065067918758382076
   [21]:
0.2890991910655504452694973388386245833886
   [22]:
0.1677023090143674924812794066684739089692
   [23]:
0.5431984999200820622492232544929015076422
   [24]:
0.5
   [25]:
0.229723376779308992354268786751867182406
   [26]:
0.1484504857764892184708816136855450780036
   [27]:
0.6218261374442017891748495995625877395904
   [28]:
0.345634414455267594632411852533035565922
   [29]:
0.2960166353232403562260597893149840700427
   [30]:
0.1964044119198634755202773300619960957683
   [31]:
0.507578952756896168253662880623019834189
   [32]:
0.1964044119198634755202773300619960957683
   [33]:
0.5435599392114846833945392592447825794875
   [34]:
0.4564400607885153166054607407552174205125
   [35]:
0
   [36]:
0.8932424297959716114857070614935197598037
   [37]:
0.235080991685955290728811793040237656087
   [38]:
0.2272600907872339989668723236668473384232
   [39]:
0.5376589175268107103043158832929150054898
   [40]:
0.654365585544732405367588147466964434078
   [41]:
0.1865110237728683122925916452336539105152
   [42]:
0.2093678467839996568771268907180845244511
   [43]:
0.6041211294431320308302814640482615650337
   [44]:
0.5
   [45]:
0.2456982845434307717922939735167945759736
   [46]:
0.3267169971550315044857450841469151865197
   [47]:
0.4275847183015377237219609423362902375067
   [48]:
0.3267169971550315044857450841469151865197
   [49]:
1
   [50]:
0
   [51]:
0
   [52]:
1
   [53]:
0.172208189184588117717598023423322049212
   [54]:
0.2266464353678437119922203717975587385607
   [55]:
0.6011453754475681702901816047791192122273
   [56]:
0.8035955880801365244797226699380039042317
   [57]:
0.1201079962998774388409560385447331389395
   [58]:
0.2264580093900595521875537931614364880211
   [59]:
0.6534339943100630089714901682938303730394
   [60]:
0.6732830028449684955142549158530848134803
   [61]:
0.1476907126624975141627392922523725624813
   [62]:
0.4261546436687512429186303538738137187593
   [63]:
0.4261546436687512429186303538738137187593
   [64]:
0.5
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 6 天前 | 显示全部楼层
根据KeyTo9_Fans的结果给出的对应的Singular代码
  1. LIB "primdec.lib";
  2. LIB "solve.lib";

  3. ring r=0,(v(0..63)),dp;
  4. //VID(0,0,XI)+VID(0,0,HO)+VID(0,0,FA)=1
  5. poly f0=v(0)+v(1)+v(2)-1;
  6. //VID(0,1,XI)+VID(0,1,HO)+VID(0,1,FA)=1
  7. poly f1=v(4)+v(5)+v(6)-1;
  8. //VID(0,2,XI)+VID(0,2,HO)+VID(0,2,FA)=1
  9. poly f2=v(8)+v(9)+v(10)-1;
  10. //VID(0,3,XI)+VID(0,3,HO)+VID(0,3,FA)=1
  11. poly f3=v(12)+v(13)+v(14)-1;
  12. //VID(1,0,XI)+VID(1,0,HO)+VID(1,0,FA)=1
  13. poly f4=v(16)+v(17)+v(18)-1;
  14. //VID(1,1,XI)+VID(1,1,HO)+VID(1,1,FA)=1
  15. poly f5=v(20)+v(21)+v(22)-1;
  16. //VID(1,2,XI)+VID(1,2,HO)+VID(1,2,FA)=1
  17. poly f6=v(24)+v(25)+v(26)-1;
  18. //VID(1,3,XI)+VID(1,3,HO)+VID(1,3,FA)=1
  19. poly f7=v(28)+v(29)+v(30)-1;
  20. //VID(2,0,XI)+VID(2,0,HO)+VID(2,0,FA)=1
  21. poly f8=v(32)+v(33)+v(34)-1;
  22. //VID(2,1,XI)+VID(2,1,HO)+VID(2,1,FA)=1
  23. poly f9=v(36)+v(37)+v(38)-1;
  24. //VID(2,2,XI)+VID(2,2,HO)+VID(2,2,FA)=1
  25. poly f10=v(40)+v(41)+v(42)-1;
  26. //VID(2,3,XI)+VID(2,3,HO)+VID(2,3,FA)=1
  27. poly f11=v(44)+v(45)+v(46)-1;
  28. //VID(3,0,XI)+VID(3,0,HO)+VID(3,0,FA)=1
  29. poly f12=v(48)+v(49)+v(50)-1;
  30. //VID(3,1,XI)+VID(3,1,HO)+VID(3,1,FA)=1
  31. poly f13=v(52)+v(53)+v(54)-1;
  32. //VID(3,2,XI)+VID(3,2,HO)+VID(3,2,FA)=1
  33. poly f14=v(56)+v(57)+v(58)-1;
  34. //VID(3,3,XI)+VID(3,3,HO)+VID(3,3,FA)=1
  35. poly f15=v(60)+v(61)+v(62)-1;
  36. poly f16=2*v(3)-1;
  37. poly f17=2*v(23)-1;
  38. poly f18=2*v(43)-1;
  39. poly f19=2*v(63)-1;
  40. poly f20=v(19)+v(7)-1;
  41. poly f21=v(35)+v(11)-1;
  42. poly f22=v(39)+v(27)-1;
  43. poly f23=v(51)+v(15)-1;
  44. poly f24=v(55)+v(31)-1;
  45. poly f25=v(59)+v(47)-1;
  46. poly f26=v(2);
  47. poly f27=v(18);
  48. poly f28=v(34);
  49. poly f29=v(50);
  50. poly f30=v(1);
  51. poly f31=v(5);
  52. poly f32=v(9);
  53. poly f33=v(13);
  54. poly f34=v(0)-1;
  55. poly f35=v(48)-1;
  56. //VID(0,0,MT)
  57. poly f36=v(0)*v(0)*v(23)+v(0)*v(2)*v(19)+v(2)*v(0)*v(7)+v(2)*v(2)*v(3)-v(3);
  58. //VID(0,1,MT)
  59. poly f37=v(4)*v(16)*v(27)+v(4)*v(18)*v(23)+v(6)*v(16)*v(11)+v(6)*v(17)*v(3)+v(6)*v(18)*v(7)-v(7);
  60. //VID(0,2,MT)
  61. poly f38=v(8)*v(32)*v(31)+v(8)*v(34)*v(27)+v(10)*v(32)*v(15)+v(10)*v(33)*v(7)+v(10)*v(34)*v(11)-v(11);
  62. //VID(0,3,MT)
  63. poly f39=0+v(12)*v(50)*v(31)+v(14)*v(49)*v(11)+v(14)*v(50)*v(15)-v(15);
  64. //VID(1,0,MT)
  65. poly f40=v(16)*v(4)*v(39)+v(16)*v(6)*v(35)+v(17)*v(4)+v(17)*v(6)*v(3)+v(18)*v(4)*v(23)+v(18)*v(6)*v(19)-v(19);
  66. //VID(1,1,MT)
  67. poly f41=v(20)*v(20)*v(43)+v(20)*v(22)*v(39)+v(21)*v(20)+v(21)*v(21)*v(3)+v(21)*v(22)*v(7)+v(22)*v(20)*v(27)+v(22)*v(21)*v(19)+v(22)*v(22)*v(23)-v(23);
  68. //VID(1,2,MT)
  69. poly f42=v(24)*v(36)*v(47)+v(24)*v(38)*v(43)+v(25)*v(36)+v(25)*v(37)*v(7)+v(25)*v(38)*v(11)+v(26)*v(36)*v(31)+v(26)*v(37)*v(23)+v(26)*v(38)*v(27)-v(27);
  70. //VID(1,3,MT)
  71. poly f43=0+v(28)*v(54)*v(47)+v(29)*v(52)+v(29)*v(53)*v(11)+v(29)*v(54)*v(15)+v(30)*v(53)*v(27)+v(30)*v(54)*v(31)-v(31);
  72. //VID(2,0,MT)
  73. poly f44=v(32)*v(8)*v(55)+v(32)*v(10)*v(51)+v(33)*v(8)+v(33)*v(10)*v(19)+v(34)*v(8)*v(39)+v(34)*v(10)*v(35)-v(35);
  74. //VID(2,1,MT)
  75. poly f45=v(36)*v(24)*v(59)+v(36)*v(26)*v(55)+v(37)*v(24)+v(37)*v(25)*v(19)+v(37)*v(26)*v(23)+v(38)*v(24)*v(43)+v(38)*v(25)*v(35)+v(38)*v(26)*v(39)-v(39);
  76. //VID(2,2,MT)
  77. poly f46=v(40)*v(40)*v(63)+v(40)*v(42)*v(59)+v(41)*v(40)+v(41)*v(41)*v(23)+v(41)*v(42)*v(27)+v(42)*v(40)*v(47)+v(42)*v(41)*v(39)+v(42)*v(42)*v(43)-v(43);
  78. //VID(2,3,MT)
  79. poly f47=0+v(44)*v(58)*v(63)+v(45)*v(56)+v(45)*v(57)*v(27)+v(45)*v(58)*v(31)+v(46)*v(57)*v(43)+v(46)*v(58)*v(47)-v(47);
  80. //VID(3,0,MT)
  81. poly f48=v(48)*v(12)+v(48)*v(14)+v(49)*v(12)+v(49)*v(14)*v(35)+v(50)*v(12)*v(55)+v(50)*v(14)*v(51)-v(51);
  82. //VID(3,1,MT)
  83. poly f49=v(52)*v(28)+v(52)*v(30)+v(53)*v(28)+v(53)*v(29)*v(35)+v(53)*v(30)*v(39)+v(54)*v(28)*v(59)+v(54)*v(29)*v(51)+v(54)*v(30)*v(55)-v(55);
  84. //VID(3,2,MT)
  85. poly f50=v(56)*v(44)+v(56)*v(46)+v(57)*v(44)+v(57)*v(45)*v(39)+v(57)*v(46)*v(43)+v(58)*v(44)*v(63)+v(58)*v(45)*v(55)+v(58)*v(46)*v(59)-v(59);
  86. //VID(3,3,MT)
  87. poly f51=v(60)*v(60)*1/2+v(60)*v(62)+v(61)*v(60)+v(61)*v(61)*v(43)+v(61)*v(62)*v(47)+v(62)*v(61)*v(59)+v(62)*v(62)*v(63)-v(63);

  88. //extra equation by sim
  89. //XI[0,1]=FA[0,1]
  90. poly f52=v(16)*v(27)+v(18)*v(23)-(v(16)*v(11)+v(18)*v(7)+v(17)*v(3));
  91. //XI[0,2]=FA[0,2]
  92. poly f53=v(32)*v(31)+v(34)*v(27)-(v(32)*v(15)+v(34)*v(11)+v(33)*v(7));
  93. //XI[0,3]=FA[0,3]
  94. poly f54=v(48)*0+v(50)*v(31)-(v(48)*0+v(50)*v(15)+v(49)*v(11));
  95. //XI[0,3]=HO[0,3]
  96. poly f55=v(48)*0+v(50)*v(31);
  97. //FA[0,3]=HO[0,3]
  98. poly f56=v(48)*0+v(50)*v(15)+v(49)*v(11);
  99. //XI[1,0]=HO[1,0]
  100. poly f57=v(4)*v(39)+v(6)*v(35)-(v(4)+v(6)*v(3));
  101. //XI[1,1]=FA[1,1]
  102. poly f58=v(20)*v(43)+v(22)*v(39)-(v(20)*v(27)+v(22)*v(23)+v(21)*v(19));
  103. //XI[1,1]=HO[1,1]
  104. poly f59=v(20)*v(43)+v(22)*v(39)-(v(20)+v(22)*v(7)+v(21)*v(3));
  105. //FA[1,1]=HO[1,1]
  106. poly f60=v(20)*v(27)+v(22)*v(23)+v(21)*v(19)-(v(20)+v(22)*v(7)+v(21)*v(3));
  107. //XI[1,2]=FA[1,2]
  108. poly f61=v(36)*v(47)+v(38)*v(43)-(v(36)*v(31)+v(38)*v(27)+v(37)*v(23));
  109. //XI[1,2]=HO[1,2]
  110. poly f62=v(36)*v(47)+v(38)*v(43)-(v(36)+v(38)*v(11)+v(37)*v(7));
  111. //FA[1,2]=HO[1,2]
  112. poly f63=v(36)*v(31)+v(38)*v(27)+v(37)*v(23)-(v(36)+v(38)*v(11)+v(37)*v(7));
  113. //XI[1,3]=FA[1,3]
  114. poly f64=v(52)*0+v(54)*v(47)-(v(52)*0+v(54)*v(31)+v(53)*v(27));
  115. //XI[1,3]=HO[1,3]
  116. poly f65=v(52)*0+v(54)*v(47)-(v(52)+v(54)*v(15)+v(53)*v(11));
  117. //FA[1,3]=HO[1,3]
  118. poly f66=v(52)*0+v(54)*v(31)+v(53)*v(27)-(v(52)+v(54)*v(15)+v(53)*v(11));
  119. //XI[2,0]=HO[2,0]
  120. poly f67=v(8)*v(55)+v(10)*v(51)-(v(8)+v(10)*v(19));
  121. //XI[2,1]=FA[2,1]
  122. poly f68=v(24)*v(59)+v(26)*v(55)-(v(24)*v(43)+v(26)*v(39)+v(25)*v(35));
  123. //XI[2,1]=HO[2,1]
  124. poly f69=v(24)*v(59)+v(26)*v(55)-(v(24)+v(26)*v(23)+v(25)*v(19));
  125. //FA[2,1]=HO[2,1]
  126. poly f70=v(24)*v(43)+v(26)*v(39)+v(25)*v(35)-(v(24)+v(26)*v(23)+v(25)*v(19));
  127. //XI[2,2]=FA[2,2]
  128. poly f71=v(40)*v(63)+v(42)*v(59)-(v(40)*v(47)+v(42)*v(43)+v(41)*v(39));
  129. //XI[2,2]=HO[2,2]
  130. poly f72=v(40)*v(63)+v(42)*v(59)-(v(40)+v(42)*v(27)+v(41)*v(23));
  131. //FA[2,2]=HO[2,2]
  132. poly f73=v(40)*v(47)+v(42)*v(43)+v(41)*v(39)-(v(40)+v(42)*v(27)+v(41)*v(23));
  133. //XI[2,3]=FA[2,3]
  134. poly f74=v(56)*0+v(58)*v(63)-(v(56)*0+v(58)*v(47)+v(57)*v(43));
  135. //XI[2,3]=HO[2,3]
  136. poly f75=v(56)*0+v(58)*v(63)-(v(56)+v(58)*v(31)+v(57)*v(27));
  137. //FA[2,3]=HO[2,3]
  138. poly f76=v(56)*0+v(58)*v(47)+v(57)*v(43)-(v(56)+v(58)*v(31)+v(57)*v(27));
  139. //XI[3,1]=FA[3,1]
  140. poly f77=v(28)*1+v(30)*1-(v(28)*v(59)+v(30)*v(55)+v(29)*v(51));
  141. //XI[3,1]=HO[3,1]
  142. poly f78=v(28)*1+v(30)*1-(v(28)+v(30)*v(39)+v(29)*v(35));
  143. //FA[3,1]=HO[3,1]
  144. poly f79=v(28)*v(59)+v(30)*v(55)+v(29)*v(51)-(v(28)+v(30)*v(39)+v(29)*v(35));
  145. //XI[3,2]=FA[3,2]
  146. poly f80=v(44)*1+v(46)*1-(v(44)*v(63)+v(46)*v(59)+v(45)*v(55));
  147. //XI[3,2]=HO[3,2]
  148. poly f81=v(44)*1+v(46)*1-(v(44)+v(46)*v(43)+v(45)*v(39));
  149. //FA[3,2]=HO[3,2]
  150. poly f82=v(44)*v(63)+v(46)*v(59)+v(45)*v(55)-(v(44)+v(46)*v(43)+v(45)*v(39));
  151. //XI[3,3]=FA[3,3]
  152. poly f83=v(60)*1/2+v(62)*1-(v(60)*0+v(62)*v(63)+v(61)*v(59));
  153. //XI[3,3]=HO[3,3]
  154. poly f84=v(60)*1/2+v(62)*1-(v(60)+v(62)*v(47)+v(61)*v(43));
  155. //FA[3,3]=HO[3,3]
  156. poly f85=v(60)*0+v(62)*v(63)+v(61)*v(59)-(v(60)+v(62)*v(47)+v(61)*v(43));
  157. poly f86=3*v(12)-1;
  158. ideal ii=f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40,f41,f42,f43,f44,f45,f46,f47,f48,f49,f50,f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f62,f63,f64,f65,f66,f67,f68,f69,f70,f71,f72,f73,f74,f75,f76,f77,f78,f79,f80,f81,f82,f83,f84,f85,f86;
  159. ideal i0=std(ii);
  160. dim(i0);i0;

  161. def AC=solve(i0,40,0);
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-5-31 08:12 , Processed in 0.032391 second(s), 14 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表