- 注册时间
- 2021-7-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 1555
- 在线时间
- 小时
|
楼主 |
发表于 2025-5-2 00:34:17
|
显示全部楼层
We are told first to cut oft the pieces 1 and 2 and pack them into the triangular space marked off by the dotted line, and so form a rectangle.
So far, so good. Now, we are directed to apply the old step principle, as shown, and, by moving down the piece 4 one step, form the required square. But, unfortunately, it does not produce a square: only an oblong. Call the three long sides of the mitre 84 in. each. Then, before cutting the steps, our rectangle in three pieces will be 84×63. The steps must be 10½ in. in height and 12 in. in breadth. Therefore, by moving down a step we reduce by 12 in. the side 84 in. and increase by 10½ in. the side 63 in. Hence our final rectangle must be 72 in. × 73½ in., which certainly is not a square! The fact is, the step principle can only be applied to rectangles with sides of particular relative lengths. For example, if the shorter side in this case were 615/7 (instead of 63), then the step method would apply. For the steps would then be 102/7 in. in height and 12 in. in breadth. Note that 615/7 × 84= the square of 72. At present no solution has been found in four pieces, and I do not believe one possible.
我們首先被告知要切下第1和第2塊,並將它們放入由虛線標記的三角形空間中,從而形成一個矩形。
到目前為止,一切順利。現在,我們被指示應用舊的階梯原理,如圖所示,通過將第4塊向下移動一階,形成所需的正方形。但不幸的是,這並未形成正方形:只形成了一個長方形。假設斜角的三個長邊各為84英寸。那麼,在切割階梯之前,我們的三塊矩形將為84×63英寸。階梯的高度必須為10½英寸,寬度為12英寸。因此,通過向下移動一階,我們將84英寸的邊減少12英寸,並將63英寸的邊增加10½英寸。因此,我們的最終矩形必須為72英寸×73½英寸,這顯然不是正方形!事實上,階梯原理僅適用於具有特定相對長度邊的矩形。例如,如果在這種情況下較短邊為615/7英寸(而不是63英寸),那麼階梯方法將適用。因為階梯的高度將為102/7英寸,寬度為12英寸。請注意,615/7 × 84 = 72的平方。目前尚未找到四塊的解決方案,我也不認為這是可能的。 |
|