- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2012-5-7 22:31:53
|
显示全部楼层
8#的结论来自于代数计算:
记直角三角形BAC的坐标为
$(m*cos(alpha), n*sin(alpha)), (m*cos(t), n*sin(t)), (m*cos(beta), n*sin(beta))$
定点P的坐标$(x,y)$则
$(m*cos(alpha)-m*cos(t))^2+(n*sin(alpha)-n*sin(t))^2+(m*cos(t)-m*cos(beta))^2+$
$(n*sin(t)-n*sin(beta))^2-(m*cos(beta)-m*cos(alpha))^2-(n*sin(beta)-n*sin(alpha))^2=0$
$n*(sin(alpha)-sin(beta))/(m*(cos(alpha)-cos(beta)))-(y-n*sin(alpha))/(x-m*cos(alpha))=0$
设$sin(alpha) = (2*u)/(1+u^2),cos(alpha) = (1-u^2)/(1+u^2)$消去$beta$
$(-4*cos(t)^2*n^4*x*m+2*n^4*x^2+4*n^4*x*m+2*m^4*y^2+4*cos(t)^2*m^3*n^2*x+2*cos(t)^2*m^4*n^2-2*m^4*n^2-4*sin(t)*n^3*x*m*y-$
$2*cos(t)^2*n^2*m^2*y^2+2*n^4*m^2-4*m^3*n^2*x-2*m^2*n^2*x^2+4*cos(t)*m^4*y^2-4*sin(t)*n^3*m^2*y+2*cos(t)^2*m^2*n^2*x^2-$
$2*cos(t)^2*n^4*m^2+2*cos(t)^2*m^4*y^2-2*cos(t)^2*n^4*x^2+2*n^2*m^2*y^2)*u^4+(-8*sin(t)*n^4*x*m+8*n^3*x*m*y-8*cos(t)*m^4*n*y-$
$8*sin(t)*n^4*x^2-8*cos(t)^2*m^4*n*y+8*cos(t)^2*n^3*m^2*y+8*cos(t)*m^3*n*x*y+8*m^3*n*x*y)*u^3+(-4*n^4*m^2+4*m^2*n^2*x^2+$
$8*sin(t)*n^3*m^2*y+4*cos(t)^2*m^2*n^2*x^2+4*cos(t)^2*m^4*y^2-4*cos(t)^2*n^4*x^2-16*cos(t)*m^3*n^2*x+4*m^4*n^2-4*n^2*m^2*y^2+$
$12*n^4*x^2+4*cos(t)^2*m^4*n^2-4*cos(t)^2*n^2*m^2*y^2-4*cos(t)^2*n^4*m^2-4*m^4*y^2)*u^2+(-8*sin(t)*n^4*x^2-8*cos(t)^2*m^4*n*y+$
$8*cos(t)*m^4*n*y-8*m^3*n*x*y+8*cos(t)^2*n^3*m^2*y+8*sin(t)*n^4*x*m+8*cos(t)*m^3*n*x*y-8*n^3*x*m*y)*u-2*m^2*n^2*x^2-$
$2*cos(t)^2*n^4*x^2-2*cos(t)^2*n^4*m^2-4*sin(t)*n^3*m^2*y+2*cos(t)^2*m^4*y^2+4*m^3*n^2*x+4*sin(t)*n^3*x*m*y+2*n^4*m^2-$
$2*cos(t)^2*n^2*m^2*y^2+2*cos(t)^2*m^4*n^2-4*cos(t)*m^4*y^2+2*cos(t)^2*m^2*n^2*x^2+2*m^4*y^2-2*m^4*n^2+2*n^2*m^2*y^2-$
$4*n^4*x*m+4*cos(t)^2*n^4*x*m-4*cos(t)^2*m^3*n^2*x+2*n^4*x^2=0$
只需要计算上式关于$u^k(k=0,1,2,3,4)$的系数为0即可得到8#的结果 |
|