找回密码
 欢迎注册
查看: 28609|回复: 3

[求助] 请问高手这个函数的上限和下限函数

[复制链接]
发表于 2008-5-8 07:11:52 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
已知函数 $f(x)=\sum_{i=0}^{m} C_m^i \frac{(-1)^ip^i}{x+i}$,其中 $x>0,\quad 0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-8 09:35:34 | 显示全部楼层
$f(x)=\sum_{i=0}^{m} C_m^i \frac{(-1)^ip^i}{x+i}$ 用 maple 的simplify(f(x))得到: $f(x)=g(x)/x(x+m+1)$ $g(x)=g1(x)+g2(x)$ $g1(x)=(x+m+1)*H([x, -m], [1+x], p)$ $g2(x)=C(m, m+1)*(-p)^(m+1)*H([1, 1, m+x+1], [m+2, x+2+m], p)*x$ H为超几何函数,关于超几何有的有close形式的公式,有的没有。对于判断有没有的问题是kunth的一个50分的问题,不过已经被解决,可以参考这个: http://www.math.upenn.edu/~wilf/AeqB.html
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-8 22:33:12 | 显示全部楼层
原帖由 shshsh_0510 于 2008-5-8 09:35 发表 $f(x)=\sum_{i=0}^{m} C_m^i \frac{(-1)^ip^i}{x+i}$ 用 maple 的simplify(f(x))得到: $f(x)=g(x)/x(x+m+1)$ $g(x)=g1(x)+g2(x)$ $g1(x)=(x+m+1)*H([x, -m], [1+x], p)$ $g2(x)=C(m, m+1)*(-p)^(m+1)*H$ ...
多谢 shshsh_0510 不过我才疏学浅 还没完全看懂你的回复 正在看你介绍的书 感觉很有用 看完了再不懂的话再来问
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-11 11:00:14 | 显示全部楼层
如果我们$p^xf(x)$看成p的函数$g(p,x)$,计算这个函数关于p的导数,得到结果为$p^{x-1}(1-p)^n>0$ 所以我们知道$p^xf(x)$是p的单调函数。所以我们任意取$0<=p_1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-4 16:59 , Processed in 0.037070 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表