找回密码
 欢迎注册
查看: 21338|回复: 5

[提问] 请教一个“多少”问题

[复制链接]
发表于 2012-6-4 14:01:07 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
在有限数量范围内,多少比较容易判断,当数量达到无限大时,比较相互之间的多少就有点麻烦。正如有人所言:“在无穷大的世界里,部分可能等于全部!” 例如,将所有自然数自然数分为两部分:一部分数的个位数字等于1;其余为另一部分。当我们对这些自然数给定一个范围时(如:一千或一亿以内),显然前一部分的数多于后一部分。但这两部分的数字可以建立起一一对应关系,也就是说它们是相等的。 我的问题是:当我们将自然数(或者其他无情多的数)划分为两部分时,有没有比较它们多少的标准办法?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-4 15:40:04 | 显示全部楼层
现代集合论的规定是: 如集合A与集合B之间有“一一对应”函数关系,则称A与B等势,即通俗讲的“一样多” 如集合A只能与集合B的真子集合之间有“一一对应”函数关系,则称A势小于B等势,即通俗讲的“A比B少” 对于自然数,划分为两部分时,只有两种可能: 1.其中有一个是有限集合时,有限集合哪个集合比另一个集合“少” 2.两个都是无限集合时,两个集合“一样多”
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-6-4 22:26:24 | 显示全部楼层
谢谢! 有限集合比较容易理解。 问题是无限集合可以看作是由有限集合演化而来的。例如,随着数值范围的扩大,质数与合数的比值不断减小。但一旦范围扩大到整个自然数,就来了个大转变:无穷个质数与无穷个合数突然变得“一样多”了!数学家是如何解答这个转变的呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-5 19:24:47 | 显示全部楼层
试一下
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-6-6 10:02:51 | 显示全部楼层
谢谢! ...但一旦范围扩大到整个自然数,就来了个大转变:无穷个质数与无穷个合数突然变得“一样多”了!数学家是如何解答这个转变的呢? 平常心 发表于 2012-6-4 22:26
由于受习惯势力的影响,当有限扩展无限时必然会产生不少困惑。 下面举个例子,不知是否能理解到有限和无限的不同: $\sum_{k=1}^{n} \frac{1}{k(k+1)}=1-frac{1}{n+1}$ $\sum_{k=1}^{n} \frac{4}{k(k+1)(k+2)}=1-frac{2}{(n+1)(n+2)}$ 所以,对任何正整数n,$\sum_{k=1}^{n} \frac{1}{k(k+1)}<\sum_{k=1}^{n} \frac{4}{k(k+1)(k+2)}$ 那么,$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}<\sum_{k=1}^{\infty} \frac{4}{k(k+1)(k+2)}$成立? 事实上,$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\sum_{k=1}^{\infty} \frac{4}{k(k+1)(k+2)}=1$,故上面式子是不成立。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-6-8 09:57:01 | 显示全部楼层
再次感谢! 我正在整理一个小小的证明。尽管“小”,我仍然努力使我的证明严密一些。我想,今后我需要各位朋友更多的指导。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 13:47 , Processed in 0.022668 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表