找回密码
 欢迎注册
楼主: medie2005

[求助] 一个计数问题

[复制链接]
 楼主| 发表于 2008-5-13 13:18:14 | 显示全部楼层
我要的并不仅仅是一个结果. 我要的是通过解生成函数,求得的a(n)的表达式的过程.(如果解不出,渐进解也可以接受).
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 13:32:07 | 显示全部楼层
噢,是个爱学习的 我记得第一次看到这个好像是在卢开澄的那本“组合数学”吧,你找找看
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 13:52:59 | 显示全部楼层
渐近式也挺难的。 我发现对于任意正实数$C$,对于充分大的n,必然有$f(n)C*t^n$ 也就是增长速度略低于$C*5.4^n$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 15:47:44 | 显示全部楼层
当n趋于无穷时,a(n+1)/a(n)=27/5。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 16:11:17 | 显示全部楼层
我们可以看到:当n趋于无穷时,递推公式就变成了5*a(n)=22*a(n-1)+27a(n-2), 如果假设此时a(n)成为等比数列c*d^n,那么有5*d^2=22*d+27,所以d=27/5。 即:当n趋于无穷时,a(n+1)/a(n)=27/5。 但是此时的c好像很难求,猜想当n趋于无穷时,c=a(n)/(27/5)^n趋于0。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 17:03:51 | 显示全部楼层
渐进式貌似为:$c*n^(-3/2)(27/5)^n$。看看能不能求出系数c来。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 17:21:30 | 显示全部楼层
原帖由 zgg___ 于 2008-5-13 17:03 发表 渐进式貌似为:$c*n^(-3/2)(27/5)^n$。看看能不能求出系数c来。
如何得出$n^{-3/2}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 17:26:47 | 显示全部楼层
是蒙的,先用1/n和1/n^2,代入递推公式求极限,发现指数介于之间,然后就中着了,呵呵。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 17:54:12 | 显示全部楼层
$27^2(n^2+n)(c_0+{c_1}/n+{c_2}/n^2+{c_3}/n^3+...)=27*11*(2n^2-n)*(c_0+{c_1}/n+{c_1}/n^2+{c_1}/n^3+{c_2}/n^2+2{c_2}/n^3+{c_3}/n^3+...)+15(9n^2-18n+8)(c_0+{c_1}/n+2{c_1}/n^2+4{c_1}/n^3+{c_2}/n^2+4{c_2}/n^3+{c_3}/n^3+...)$ 这个式子谁来化简一下,计算出c1,c2,c3?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-13 18:48:43 | 显示全部楼层
zgg__的结论应该是正确的。不过计算比较难。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-4 17:09 , Processed in 0.844964 second(s), 21 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表