找回密码
 欢迎注册
查看: 41341|回复: 12

[原创] 水果的划分问题

[复制链接]
发表于 2012-9-15 09:16:29 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
这里有一堆水果, 10个苹果,11个橘子,12个香蕉,13个葡萄, 把这么多水果 掺杂在一块, 分成2小堆 有多少种方法, 分成3小堆, 4小堆呢? (不能为空)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-9-15 14:37:55 | 显示全部楼层
假设苹果、橘子、香蕉和葡萄都是一样的, 分成的$2$堆也不区分第$1$堆还是第$2$堆, 并且某堆可以为空, 那么一共有$(11*12*13*14)/2=12012$种分法。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-9-15 17:31:33 | 显示全部楼层
2# KeyTo9_Fans 不能为空, 如果2堆可以为空,就不是2堆,而是一堆了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-9-15 18:37:40 | 显示全部楼层
能否可以包含空堆不重要。比如这里就差一个结果。 如果可以包含空堆的解为S(k) (k堆),不可以包含空堆的解为T(k),那么T(k)=S(k)-S(k-1). 所以我们可以仅考虑包含空堆的情况。而首先可以分析区分不同堆的情况的数目,然后利用枚举定理可以算出不区分堆的情况的数目
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-9-15 18:41:48 | 显示全部楼层
对于区分不同堆的情况,相当于计算一些方程组的解的数目,比如这里分三堆,就变成方程组 x1+x2+x3=10 y1+y2+y3=11 z1+z2+z3=12 w1+w2+w3=13 的解的数目(然后计算各个方程解的数目用乘法原理相乘即可) 而为了利用枚举定理,我们还需要计算在某些变换下的不变量的数目,比如交换第一和第二堆不变换的解的数目,也就是x1=x2,y1=y2,z1=z2,w1=w2下解的数目,很容易计数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-9-15 20:43:19 | 显示全部楼层
原来是Burnside's Lemma即可

评分

参与人数 1鲜花 +2 收起 理由
wayne + 2 我消化消化.

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-9-15 22:17:58 | 显示全部楼层
比如三堆的情况,由于置换三堆后相同的结果我们认为是等价的。所以我们需要分析置换群G=S3 根据Burnside's Lemma,我们需要计算对于G中各元素下不变量的数目 由于所有结果都是恒等变换的不变量,所以对于恒等元,不变量数目就是5#中方程解的数目,其中 比如x1+x2+x3=10(xi>=0)的解的数目为$C_12^2$,同理算出另外三组方程,所以总数目为 $C_12^2C_13^2C_14^2C_15^2$ 而S3中置换两个元素的变换有3个,它们相互都类似,我们只用讨论置换前两堆的情况,那么就对应方程 2x1+x3=10,2y1+y3=11等,解的数目分别为6,6,7,7,所以总数目为6*6*7*7 此外S3中还有轮换3个元素的变换,对应方程3x1=10等,必然无解,也就是数目为0. 所以最后我们得到结果为1/6(1*C_12^2C_13^2C_14^2C_15^2+3*6*6*7*7+2*0)=8199072 当然这个包含了2楼中的情况,如果我们要求三堆都不空,就要再减去2楼中数目
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-9-16 09:12:15 | 显示全部楼层
可否给出一般化的公式呢 假如有n种水果, 每种水果分别有p1,p2,p3, ...pn 个. 求分成m个非空的小堆 的方案数目
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-9-16 09:13:29 | 显示全部楼层
此题我们可以等价成: 将 一个整数分解成多个因子的无序的乘积的形式, 共有多少种方法.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-9-16 09:15:29 | 显示全部楼层
2堆,非空, 答案应该是 Ceil [(1+p1)(1+p2)...(1+pn)/2] -1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 21:37 , Processed in 0.026465 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表