- 注册时间
- 2010-1-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 28138
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
$Z_6^2$上的最优幻方
在编排6阶全对称幻方时,排成蜂窝状网格(又称为等距网格)比排成方格可体现更高的对称性,如图1所示。图中坐标相同的格为同一格,表现了所谓全对称幻方是嵌入到一个三维环面(轮胎面)的。在平面上表现时,可以按这个局部呈现的相邻关系扩展到整个平面上。扩展后,将视野取为一个如图2那样的正六角形区域时,呈现了6阶幻方的旋转对称性。在等距格网上,原来方格网上的一条对角线(x=y)看起来成为一条主轴。等距网格的对角线定义为相距次近的两格的连线,如图1中的黄色格列(在图2的正六角形视野中,呈现为正六角形的长对角线方向)。按此定义,6阶幻方有3条主轴方向和3条对角线方向,我们要求在其中的每一个方向上直线排列的6格数之和都等于幻方和数。这就比通常所谓的“全对称幻方”约束更多,对称性更高。
四边形视野
六角形视野
图1 菱形视野 图2 六角形视野
用代数学的语言来描述,6阶幻方就是$Z_6^2$→{1, 2, 3, ..., 36}的一个映射f, f 满足某些函数方程,即幻方编排者所称的幻方律。比如关于行的幻方律即
$ f(x,y)+f(x,y+1)+f(x,y+2)+...+f(x,y+5)=6A$($A$是36个填入数的平均值)
由于 f 的定义域为模$Z_6^2$, 所以这类幻方宜可称之为模上的幻方,简称模幻方。
除了定义时给出的2条幻方律(其实是6条,但是可用主轴线和对角线分别概括),6阶模幻方还有一些导出的幻方律,展现了其6阶旋转对称性。
导出律1:对角线上的相间三格之和等于3A。如图3所示。变换视野,一条对角线的相间3格布成一个正三角形。图4显示两条这样的半对角线布成了一个正六角形,六角之和等于6A(导出律2)。
导出律3:见图5,4个黄色格(其中格33带红色纹线)之和等于4A。格33也可以在带纹线的青色格的位置,在此视野中这四格呈菱形。
幻方律1
图3 导出律1:对角线上的相间三格之和等于3A 图4 导出律2:正六角形的六角之和等于6A 图5 导出律3:边长为4格的菱形四角之和等于4A
还有更多的表现6阶旋转对称性的导出律,下帖给出。这些导出律并非观察具体的数字而来,而是依据定义所给的约束方程消元而得。要用具体的数字来验证这些幻方律,我暂时还没有实例,因为我至今也没有编排出一个6阶模幻方的实例。事实上,对于这样的6阶幻方,用{1, 2, 3, ..., 36}是填不成功的。因为,图5中的4格减去图3中3格=4A-3A=A,所以A必须是整数。若用{1, 2, 3, ..., 36},总和Σ=18×37,A=Σ/36 非整数。
为了编出6阶模幻方,f 只能取其它的值域。为了保持幻方的数字之美,值域应该满足一定的要求。我们的要求是尽可能接近自然数前段{1~36}。由于18×37≡18(mod 36), 所以要使A为整数,最接近{1~36}的数组是从中去掉18,添上0,即{0~17,19~36}。
这就是本擂的目标:用{0~17,19~36}填入构建6阶模幻方。 |
|