找回密码
 欢迎注册
查看: 14587|回复: 6

[提问] 如何求解多项式的所有实数根呢?用什么样的算法呢?

[复制链接]
发表于 2013-1-15 19:01:33 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
任意给一个多项式,如何求解这个多项式的所有实数根呢?其中系数都是实数!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-1-15 19:03:15 | 显示全部楼层
http://blog.163.com/shikang999@1 ... 896201131702358523/ 这儿有个答案,但是我不知道原理,原理没有说
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-1-15 19:03:45 | 显示全部楼层
函数格式:Math_Matrix_PolyRoots1(A,A_n,Ret,Erro) A:1*A_n的多项式系数矩阵 A_n:A的列数或大小 Ret:返回的实数根 Erro:误差控制 附加说明: Math_Matrix_PolySturm:求多项式在某一点的变号数 Math_Matrix_PolyRoots1_Call:获取求解区间,气源代码在下面 Math_Matrix_PolyDiv:多项式除法 特别说明:执行本函数前,最好先处理重根。然后执行本函数后,根据函数返回值的不同以确定是否继续求解复数根。如果返回0表示多项式的根都为实数根,这是Ret里面就是全部的根,否则(不管返回1还是-1)都得再求复数根,这时A里面的多项式就只存在复数解,则可以调用【求多项式复数根贝尔斯托(Bairstow)算法Math_Matrix_PolyRoots2】函数求解复数根。 源代码: Public Function Math_Matrix_PolyRoots1(ByRef A(,) As Double, ByVal A_n As Integer, ByRef Ret() As Double, ByVal Erro As Integer) As Int16 '本函数求解多项式,求解其实根到Ret里面 '如果A里面存在虚根,返回False并且返回求虚根多项式A;A里面全是实根,返回True '使用本函数前,请确定多项式没有重根 '返回1表示求得有根,但还有虚根没有求解 '返回0表示求得全部根,且无虚根 '返回-1,没有求得根,即多项式只存在虚根 Dim min As Double = Math.Abs(A(0, 1)) Dim Max As Double = Math.Abs(A(0, 0)) Dim i As Integer Dim j As Integer A_n -= 1 For i = 2 To A_n If Math.Abs(A(0, i)) > min Then min = Math.Abs(A(0, i)) End If Next min /= Max Max = 1 + min min = -Max '在区间[min,max]求解 i = Math_Matrix_PolySturm(A, min) j = Math_Matrix_PolySturm(A, Max) i = Math.Abs(i - j) If i > 0 Then Dim N As Integer = i Dim temp(2) As Double Dim mtemp As Double Dim erro1 As Double = Math.Pow(0.1, Erro) N -= 1 ReDim Ret(N) Dim Qujian(N, 1) As Double Dim Loopnumber As Int16 If N > 0 Then Math_Matrix_PolyRoots1_Call(A, min, Max, N + 1, Qujian) Else Qujian(0, 0) = min Qujian(0, 1) = Max End If For i = 0 To N temp(0) = A(0, A_n) For j = 0 To A_n - 1 temp(0) += A(0, j) * Math.Pow(Qujian(i, 0), A_n - j) Next If Math.Abs(temp(0)) <= erro1 Then Ret(i) = Qujian(i, 0) Else temp(2) = A(0, A_n) For j = 0 To A_n - 1 temp(2) += A(0, j) * Math.Pow(Qujian(i, 1), A_n - j) Next If Math.Abs(temp(2)) <= erro1 Then Ret(i) = Qujian(i, 1) Else temp(1) = 1 Loopnumber = 1000 While temp(1) > erro1 mtemp = (Qujian(i, 0) + Qujian(i, 1)) / 2 temp(1) = A(0, A_n) For j = 0 To A_n - 1 temp(1) += A(0, j) * Math.Pow(mtemp, A_n - j) Next If Math.Sign(temp(1)) = Math.Sign(temp(0)) Then Qujian(i, 0) = mtemp Else Qujian(i, 1) = mtemp End If temp(1) = Math.Abs(temp(1)) Loopnumber -= 1 If Loopnumber = 0 Then Exit While End If End While Ret(i) = mtemp End If End If Next If N = A.Length - 2 Then Return 0 Else Dim mod1(0, 0) As Double Dim Atemp(0, 1) As Double For i = 0 To N Atemp(0, 0) = 1 Atemp(0, 1) = -Ret(i) Math_Matrix_PolyDiv(A, Atemp, Nothing, mod1, 11) j = mod1.Length - 1 ReDim A(0, j) While j >= 0 A(0, j) = mod1(0, j) j -= 1 End While Next Return 1 End If Else Return -1 End If End Function Public Sub Math_Matrix_PolyRoots1_Call(ByVal A(,) As Double, ByVal min As Double, ByVal max As Double, ByVal N As Integer, ByRef Ret(,) As Double) '返回求解区域 Dim i As Integer = Math_Matrix_PolySturm(A, min) Dim j As Integer = Math_Matrix_PolySturm(A, max) Dim temp As Double = (max + min) / 2 Dim k As Integer = Math_Matrix_PolySturm(A, temp) If N > 1 Then i -= k i = Math.Abs(i) j -= k j = Math.Abs(j) If i = 0 Then Math_Matrix_PolyRoots1_Call(A, temp, max, N, Ret) ElseIf j = 0 Then Math_Matrix_PolyRoots1_Call(A, min, temp, N, Ret) Else If i = 1 Then Ret(0, 0) = min Ret(0, 1) = temp N -= 1 If N = 1 Then Ret(1, 0) = temp Ret(1, 1) = max Else Dim ret1(N - 1, 1) As Double Math_Matrix_PolyRoots1_Call(A, temp, max, N, ret1) For i = 0 To N - 1 Ret(i + 1, 0) = ret1(i, 0) Ret(i + 1, 1) = ret1(i, 1) Next End If ElseIf j = 1 Then Ret(0, 0) = temp Ret(0, 1) = max N -= 1 Dim ret1(N - 1, 1) As Double Math_Matrix_PolyRoots1_Call(A, min, temp, N, ret1) For i = 0 To N - 1 Ret(i + 1, 0) = ret1(i, 0) Ret(i + 1, 1) = ret1(i, 1) Next Else Dim ret1(i - 1, 1) As Double N = i - 1 Math_Matrix_PolyRoots1_Call(A, min, temp, i, ret1) For i = 0 To N Ret(i, 0) = ret1(i, 0) Ret(i, 1) = ret1(i, 1) Next ReDim ret1(j - 1, 1) i = j - 1 Math_Matrix_PolyRoots1_Call(A, temp, max, j, ret1) N += 1 For j = 0 To i Ret(j + N, 0) = ret1(j, 0) Ret(j + N, 1) = ret1(j, 1) Next End If End If End If End Sub
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-1-15 19:23:50 | 显示全部楼层
Polynomial Root-finder (Real Coefficients) http://www.akiti.ca/PolyRootRe.html
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-1-15 21:46:53 | 显示全部楼层
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-1-15 21:50:23 | 显示全部楼层
http://www.netlib.org/toms/493 读那么长的代码,也是一种折磨呀!!!!!!!!!!!!!!!!!!!!1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-1-15 22:03:13 | 显示全部楼层
General Complex Polynomial Root Solver and Its Further Optimization for Binary Microlenses http://arxiv.org/abs/1203.1034
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 19:37 , Processed in 0.027251 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表