找回密码
 欢迎注册
楼主: northwolves

[原创] 猜想:sin(x)+ sin(2x)/2+ sin(3x)/3+...+sin(nx)/n>=0

[复制链接]
发表于 2008-1-14 11:41:48 | 显示全部楼层
上面的几何意义的结论错了。 倒是我们可以得出 $g(t,x)*2sin(x/2)>=cos(x/2)-1$ $F(x)>=1/2g(1,x)+1/2*(cos(x/2)-1)/(2sin(x/2))$ 这个在$cos(x/2)>=0.191943$时都有$F(x)>=0$ 也就是说,大概$x<=0.877*pi$的时候,命题都已经成立,不过对于$x>0.877*pi$的情况,显然这个过程放缩过头了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-14 16:18:59 | 显示全部楼层
对于这个命题,准备分两种情况证明 i)对于$(1-1/(2n))*pi<=x<=pi$来证明 ii)对于$x<(1-1/(2n))*pi$来证明
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-14 16:24:47 | 显示全部楼层
对于情况1 在$F(x)=sin(x)+{sin(2x)}/2+...+{sin(nx)}/n$中, 用$y=pi-x$代入,得到 $F(pi-y)=sin(y)-{sin(2y)}/2+sin(3y)/3-...+(-1)^(n-1)*{sin(ny)}/n$ 其中$0<=y<=1/(2n)*pi$ 我们证明,在这个范围内 ${sin(ty)}/t (1<=t<=n)$关于t单调减 这个证明很简单,将${sin(ty)}/t$关于t求导得到导数为 $(yt*cos(ty)-sin(ty))/t^2$ 由于$0<=ty<=t/(2n)*pi<=pi/2$ 所以 $yt<=tg(yt)$ $yt*cos(yt)<=sin(yt)$ 于是${sin(ty)}/t$关于t单调减 所以得 $sum_{t=1}^n{(-1)^(t-1)*{sin(ty)}/t}>=0$ 于是i)得到证明
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-14 16:49:17 | 显示全部楼层
对于ii),需要使用比较复杂的方法,x=0显然成立,所以只需要继续看$0=cos(x/2)-1$ (而由于$0=0$) 对于一个给定的充分大的m,我们有 ${sin((n+1)x)}/(n+1)+{sin((n+2)x)}/(n+2)+...+{sin(mx)}/m$ $= -{g(n,x)}/(n+1)+(1/(n+1)-1/(n+2))g(n+1,x)+(1/(n+2)-1/(n+3))g(n+2,x)+...+(1/(m-1)-1/m)g(m-1,x)+1/m*g(m,x)$ $<= -{g(n,x)}/(n+1)+1/(n+1)*{cos(x/2)+1}/{2sin(x/2)}$ $<=-1/(n+1)*{cos(x/2)-1}/{2sin(x/2)}+1/(n+1)*{cos(x/2)+1}/{2sin(x/2)}$ $=1/{(n+1)sin(x/2)}$ 然后让$m->+infty$,得到 $sin(x)+{sin(2x)}/2+...+{sin(nx)}/n+...$ $<=sin(x)+{sin(2x)}/2+...+{sin(nx)}/n+1/{(n+1)sin(x/2)}$ 通过傅立叶级数的计算,我们得知 方程左边是${pi-x}/2$ 所以我们得到 $sin(x)+{sin(2x)}/2+...+{sin(nx)}/n>={pi-x}/2-1/{(n+1)sin(x/2)}$ 记$y={pi-x}/2$,也就是我们需要证明 $y-1/{(n+1)cos(y)}>=0$ 也就是 $ycos(y)>=1/{n+1}$ 在y不太接近0和${pi}/2$时成立, 也就是只需要证明对各个极值点成立,而这个函数先增后减,也就是分别为$y={pi}/2-{pi}/n$,$y={pi}/{2n}$时成立就够了 不过这个好像只有对前面一段y成立,所以对于y接近$pi$,也就是非常小的x,这里还没有能够证明。不过前面的一个帖子证明过$x<0.877*pi$时成立的,所以总体上应该不成问题了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-14 16:57:58 | 显示全部楼层
重新查看了一下,弄错了一项 傅立叶级数 $sin(x)+{sin(2x)}/2+...+{sin(nx)}/n+..$. 是$(pi-x)/2$ (当$0

评分

参与人数 1威望 +5 贡献 +3 鲜花 +5 收起 理由
northwolves + 5 + 3 + 5 精辟!!!向mathe版主学习

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-14 17:50:40 | 显示全部楼层
还没学到傅利叶级数,不过还是很佩服mathe的数学功底,大学学的东西这么扎实。值得我们好好学习。想问一下,那个积分是在初等范围内不可积吧?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-14 18:02:50 | 显示全部楼层
说的那个积分? 仔细想一下,加上极值点的分析,上面的分析已经足够证明这道题目了。 傅立叶级数其实我也记不清楚了,只是感觉应该可以用,所以查了一下数学分析的书,果然可以使用
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-15 08:58:35 | 显示全部楼层
就是如果将原提中的x看成不变的a而将k看成自变量x,则原题变为求和$int_1^n xsin(xa) da$,如果这个定积分可以求解,那不是就解决了这题了吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-15 08:59:39 | 显示全部楼层
上面是近似求解,将离散求和的转化为定积分。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-15 09:25:50 | 显示全部楼层
这样没有用,我们只能说如果本命题成立,那么这个定积分必然非负;反之不一定成立。 只有想我前面举例时得出F(n,x)对于n单调的情况才可以这样用。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 01:19 , Processed in 0.024908 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表