找回密码
 欢迎注册
楼主: 数学星空

[原创] 四等分点

[复制链接]
发表于 2013-3-21 07:52:59 | 显示全部楼层
对于任意平面图形是否也存在点J,过J做两垂直直线将该图形四等分呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 09:31:27 | 显示全部楼层
对平面上的任意一个面积非零的有限域,7#,9#,10#的陈述仍然成立,因为连续性和对换性仍然成立。 由于S1(t)+S2(t)=s/2, 所以参数曲线(S1(t),S2(t))如下图所示。 无标题.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 13:47:41 | 显示全部楼层
恩,似乎看懂了。 图2,坐标架旋转角度 t 并适当平移,以保持对角面积相等,即S1(t)=S3(t), S2(t)=S4(t); 当 t 递增时,即坐标架连续旋转时,为保持面积对角相等,原点O必须同时适当平移,所以O会画出一条轨迹O(t)。 改为: 图2,坐标架旋转角度 t ,平移X轴,使得S1+S2=S3+S4,然后平移Y轴,使得S1=S3是否更容易理解?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 15:12:45 | 显示全部楼层
回楼上,理解正确。7#的2就要这么理解。有了7#的2,后面图2就直接……了。 您吃枣比较过细啊,呵呵。 如果真的看懂了,您可以想一想三维的情况是否成立,如何证明。 喝酒的事就免了,还是改打麻将吧,哈哈。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 18:35:33 | 显示全部楼层
对于任意平面图形,当两条直线L1与L2的夹角为α时,若存在四等分图形的J点,请找出α应满足的条件? 这个问题还没有解决。 显然,当平面图形为圆时,α只能为90度。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 21:41:30 | 显示全部楼层
上述问题不会有良好的答案,因为这个问题不属于度量几何,而是属于仿射几何,仿射几何不回答关于角度的问题。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 21:45:34 | 显示全部楼层
16# hujunhua 虽然如此。但是还是很有意思的。特别是,正方形最小的α也只能为90度。 长方形最小的α就是对角线的夹角。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 22:19:26 | 显示全部楼层
你没有明白实质所在。问题也许很有意思,但是使用角度来表述是不恰当的。 就以你所说的正方形和长方形为例吧。 在仿射几何中,并没有正方形和长方形,两者统属于平行四边形。两条相交直线若将平行四边形分成面积比为1:1:1:1的四部分,其交点必为平行四边形的中心(对角线交点),除此之处,还必须满足什么条件呢?如图,答案是:两条直线各与一组对边相交,并且分比相等,即AE/EB=BF/FC. 无标题.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 22:52:02 | 显示全部楼层
换句话说,如果考虑角度,就不适合归结到仿射几何的问题。你的逻辑有问题。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-3-21 23:23:14 | 显示全部楼层
问题的目的是要研究两条相交直线平分图形面积的条件。这个条件不适用角度来表述,所以描述条件时不要引入角度,否则,除了少数非常特殊的图形,你一般不会得到一个简明的结论。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 10:24 , Processed in 0.028988 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表