找回密码
 欢迎注册
查看: 199|回复: 8

[讨论] 求(x^4+1)(y^4+z^4)=t^2的非平凡的正整数解

[复制链接]
发表于 2025-7-16 15:49:06 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
知乎上有一道题,   求$(x^4+1)(y^4+z^4)=t^2$的正整数解. 咱只考虑非平凡解.
我给出了初步的解答, 我发现值得讨论.就暂时先不公布链接了.

比如x=10的时候,有这些非平凡解
  1. (10, 3470, 30101)
  2. (10, 18310, 58019)
  3. (10, 300059999, 999399970)
  4. (10, 132211580450, 1560535879379)
  5. (10, 5778887979110, 11136239888261)
  6. (10, 523606833336281, 1582146687563950)
  7. (10, 3130830486676759, 5854408448039230)
  8. (10, 5556728420267245053079, 42561428523400632386470)
  9. (10, 1609802938066867151963801, 2141085960990531655699990)
  10. (10, 5006198949699987499500001, 9949987496999895006200050)
  11. (10, 2303868130334468166093591370, 8086395583987023071375221541)
  12. (10, 155257989527532997069088980270, 211405025057472201141884259059)
  13. (10, 796115258361316260299119503787370, 1445620056911436957284861910406259)
  14. (10, 7837324310880690090986184344920450, 10184771542621891067453374769662181)
  15. (10, 7943975435658355615444415692551860839, 114393799419193259636813763067876093510)
  16. (10, 7018615996813179744376653975993845738410, 20265991066696150806094057972329533770901)
  17. (10, 76517778735386331358097862503085145042390, 76898412155447329577757461097562989046039)
  18. (10, 7004028079548015956494146485192474788359779, 7192648283396860342485284356535027357722130)
  19. (10, 7030770440144476077248079783356744756130201959999, 9803869652424331217919242267523298522953969199930)
  20. (10, 2035293386112283958905238419846414687850220089944010, 4175769588593750634106517154910239291825434081419139)
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-7-16 22:33:23 | 显示全部楼层
$(x^4+1)(y^4+z^4)=t^2$
以x=10为例,此时$r=(x^4+1)=10001;(\frac{ry^2}{t})^2+(\frac{rz^2}{t})^2=r=10001$
$76^2+65^2=10001$
$p^2+q^2=10001$的一个通解为:$(\frac{76 k^2-130 k-76}{k^2+1},\frac{65 k^2+152 k-65}{k^2+1})$



解得:$p=\sqrt{\frac{76t}{10001}},q=\sqrt{\frac{65t}{10001}}$

点评

好像在原地转圈, :)  发表于 2025-7-17 09:01
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-7-17 15:54:43 | 显示全部楼层
\(y^4+z^4=\frac{t^2}{a}\)
可以改为
\(1+\left(\frac{z}{y}\right)^4=\frac1a \left(\frac{t}{y^2}\right)^2\)
所以变成这个椭圆曲线有理解问题是吧?

点评

您俩都轻车熟路了,我还没入门  发表于 2025-7-17 18:00
https://www.zhihu.com/question/1901650242983661739/answer/1928814773295883258  发表于 2025-7-17 17:44

评分

参与人数 1威望 +6 金币 +6 收起 理由
wayne + 6 + 6 是的

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-7-17 18:00:06 | 显示全部楼层
针对 $(x^4 + 1)*(a^4 + 1) = t^2$, 可以通过$[X,T]\to[-\frac{2 \left(a^4+1\right) \left(a^2 x^2+t+1\right)}{(a-x)^2},-\frac{4 \left(a^4+1\right) \left(\left(a^4+1\right) a x^3+a^4+a^3 t x+t+1\right)}{(a-x)^3}]$
得到椭圆曲线$T^2 =X^3 - 4 (a^4+1)^2 X$,
逆变换是$[x,t]=[-\frac{2 \left(a^4+1\right) \left(2 \left(a^5+a\right)+T\right)+a X^2}{4 \left(a^4+1\right)^2+4 \left(a^4+1\right) a^2 X-X^2},\frac{\left(a^4+1\right) \left(4 a^3 T X^2-16 \left(a^4+1\right)^2 \left(\left(a^4+1\right)^2+a^3 T\right)+4 a^2 \left(a^4+1\right) X^3+16 a \left(a^4+1\right) X \left(a^9+2 a^5+a+T\right)+X^4\right)}{\left(-4 \left(a^4+1\right)^2-4 \left(a^4+1\right) a^2 X+X^2\right)^2}]$

点评

是的. 就是利用了 有理点[a,a^4+1,1]才能转化成功的  发表于 2025-7-17 19:08
有道理,显然存在有理点x=a,后面就好处理了  发表于 2025-7-17 18:56
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-8-8 14:48 , Processed in 0.076307 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表