找回密码
 欢迎注册
查看: 174|回复: 28

[讨论] 一道IMO题目

[复制链接]
发表于 4 天前 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
1988年IMO一道题,据说陶哲轩没做出来.
1) 原题:  如果$a,b,y$是正整数,$y=\frac{a^2+b^2}{1+ab}$, 求证y是平方数.
2) 我的问题: 如果$a,b$都是有理数,$y=\frac{a^2+b^2}{1+ab}$,  y可以是哪些正整数呢
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 4 天前 | 显示全部楼层
第二问.可能OEIS没有收录
平方数的时候,解是$[a,b,y]=[\frac{t (2 U-t^2)}{U^2-t^2 U+1},\frac{t (U^2-1)}{U^2-t^2 U+1},t^2]$
非平方数的话,10000以内,下面这些数都可以,但不知道是什么规律
  1. 10,20,34,52,65,73,74,130,148,160,164,202,226,241,244,265,281,290,340,394,416,436,450,452,505,514,569,577,580,586,601,641,650,720,724,745,801,802,820,848,865,884,898,916,929,970,976,1044,1060,1073,1098,1105,1152,1154,1226,1252,1280,1305,1321,1345,1348,1354,1360,1396,1460,1546,1570,1585,1602,1604,1609,1620,1665,1684,1696,1721,1777,1780,1801,1802,1856,1865,1873,1924,2009,2020,2036,2041,2050,2080,2089,2164,2176,2180,2250,2305,2306,2314,2340,2404,2425,2448,2452,2473,2529,2545,2594,2626,2644,2720,2740,2785,2801,2848,2880,2890,2900,2929,2977,3044,3089,3121,3145,3152,3177,3202,3298,3305,3321,3361,3385,3466,3529,3530,3604,3636,3649,3673,3700,3744,3748,3769,3796,3825,3856,3865,3874,3881,3889,3970,3985,4034,4036,4052,4129,4176,4196,4234,4273,4304,4321,4384,4385,4420,4426,4441,4546,4561,4610,4705,4777,4801,4804,4810,4852,4880,4948,4969,5002,5044,5105,5140,5186,5200,5204,5209,5281,5364,5386,5410,5440,5473,5545,5584,5602,5620,5636,5641,5652,5706,5716,5760,5785,5825,5834,5905,5924,6052,6100,6145,6148,6154,6176,6201,6273,6274,6304,6352,6370,6401,6500,6505,6516,6544,6577,6626,6649,6660,6673,6689,6705,6730,6761,6841,6948,6961,6964,7060,7081,7114,7120,7121,7129,7156,7177,7202,7209,7234,7300,7380,7444,7456,7465,7489,7540,7561,7585,7650,7652,7690,7696,7760,7769,7780,7825,7840,7940,7969,7985,8066,8080,8116,8145,8161,8185,8194,8224,8226,8273,8320,8336,8345,8352,8425,8452,8521,8548,8665,8674,8676,8689,8705,8714,8770,8820,8865,8884,8948,8980,9001,9034,9040,9090,9124,9169,9225,9250,9281,9316,9346,9524,9529,9556,9610,9745,9760,9769,9802,9841,9866,9929
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 4 天前 来自手机 | 显示全部楼层
y可以写成两个正整数平方和形式,而且这两个正整数乘积加1是完全平方数

评分

参与人数 1威望 +12 金币 +12 贡献 +12 经验 +12 鲜花 +12 收起 理由
wayne + 12 + 12 + 12 + 12 + 12 秒懂!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 4 天前 | 显示全部楼层
mathe 发表于 2025-8-4 22:56
y可以写成两个正整数平方和形式,而且这两个正整数乘积加1是完全平方数

很不错. 这代表了一大类. 不过,我比对了一下数据,发现漏解也挺多的.漏掉的如下:
  1. 241,569,586,641,745,865,898,929,976,1152,1280,1305,1321,1348,1585,1602,1620,1665,1696,1856,1865,1873,2009,2020,2306,2404,2448,2529,2545,2644,2720,2785,2801,2880,2929,2977,3121,3321,3385,3649,3673,3744,3748,3769,3865,3881,3889,3985,4034,4129,4176,4196,4273,4304,4426,4441,4546,4561,4705,4777,4801,4852,4969,5105,5186,5281,5364,5386,5440,5584,5602,5636,5641,5652,5716,5760,5905,5924,6145,6201,6304,6352,6370,6516,6577,6626,6660,6673,6689,6961,7081,7114,7120,7121,7129,7177,7209,7465,7489,7561,7585,7652,7696,7760,7825,7840,7969,7985,8066,8080,8145,8161,8224,8226,8320,8336,8425,8521,8548,8665,8674,8676,8689,8705,8820,8865,8884,9001,9034,9090,9124,9346,9529,9556,9610,9760,9769,9866,9929
复制代码

比如$y=241$的时候,存在参数解 $[a,b]=[\frac{U^2-610 U+73504}{9 (U^2-241 U+1)},\frac{-64 U^2-2 U+305}{9 (U^2-241 U+1)}]$,  但是$241=15^2+4^2,  15*4+1=61$
比如$y=569$的时候,存在参数解 $[a,b]=[\frac{-5 U^2-278 U+79096}{27 \left(U^2-569 U+1\right)},\frac{-2984 U^2+10 U+139}{27 \left(U^2-569 U+1\right)}]$,  但是$569=20^2+13^2,  20*13+1=261$

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 3 天前 | 显示全部楼层
我们设a,b公分母为u, 于是\(a=\frac m u, b=\frac n u\)得
\(y=\frac{m^2+n^2}{u^2+mn}\)
或者我们可以写成\(m^2-ymn+n^2-yu^2=0\)
对于给定的y,如果存在整数m,n满足这个方程,那么其中必有有\(\max\{|m|,|n|\}\)最小的一组解。
由于我们把上面看成m的方程后,必然有两个整数解,满足\(|m_1m_2|=|n^2-yu^2|\),所以如果最小解满足\(|m|\ge |n|\),
那么只能\(|n|^2 \le |m|^2\le yu^2\), 由于\(n^2-yu^2\le 0\),我们可以知道方程还有一组解其中\(m,n\)符号不同,于是我们可以改写成
\(y=\frac{m^2+n^2}{u^2-mn}\)
其中特别的\(y=m^2+n^2, u^2-mn=1\)就是我前面提到的情况。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 3 天前 | 显示全部楼层
对于 $a^2 + b^2 - (1 + a b) y=0$,关于b的二次方程,判别式是$a^2 y^2-4 (a^2- y) =t^2$ ,此二次曲线的参数解是$[t,y]=[-\frac{a (a^2 U^2-4 a^2+4 U)}{2 (a^2 U+2)},\frac{a^2 (U^2+4\right)}{2 (a^2 U+2)}]$
所以y的表达式$y=\frac{a^2 (U^2+4\right)}{2 (a^2 U+2)}$,对应的b是$b_1=\frac{a U}{2},b_2=\frac{a (2 a^2-U)}{a^2 U+2}$

也就是$\{a,U\}\to {\frac{m}{n},\frac{p}{q}},$得到 $y=\frac{m^2 (p^2+4 q^2)}{2 q (m^2 p+2 n^2 q)}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 3 天前 | 显示全部楼层
我们看\(m^2+n^2=y(u^2-mn)\)
设\((m,n)=d, m=dm_0,n=dn_0, gcd(u,d)=1\)
我们得到方程
\(d^2(m_0^2+n_0^2)=y(u^2-d^2m_0n_0)\)
由于gcd(u,d)=1,所以必然有\(d^2|y\),由此得到\(u^2-d^2m_0n_0|m_0^2+n_0^2\), 于是对于每个\(m_0^2+n_0^2\)的因子s,可以对Pell方程\(u^2-d^2m_0n_0=s\)进行求解
对于满足这条件的\((m_0,n_0,u,d)\),可以有\(y=\frac{d^2(m_0^2+n_0^2)}{u^2-d^2m_0n_0}\). 不过这种方式还是很难进行枚举。
而特别对于d=1时,我们会要求\(u^2-mn|m^2+n^2\)的情况即可满足要求,这时\(y=\frac{m^2+n^2}{u^2-mn}\), 对应y的所有非平方素因子也都是模4余1的情况。
比如241对应m=64,n=1,u=9.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 3 天前 | 显示全部楼层
试了几个数字,发现若$c=\frac{a^n+b^n}{(a b)^{n-1}+1}$是一个整数,似乎 c 也是某个整数d的n次幂。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 3 天前 | 显示全部楼层
mathe 发表于 2025-8-5 08:27
我们设a,b公分母为u, 于是\(a=\frac m u, b=\frac n u\)得
\(y=\frac{m^2+n^2}{u^2+mn}\)
或者我们可以写成 ...

我发现给定$u>1$的任何正整数,总有解,不过解的个数是有限的. 简单跑了下代码, 答案如下 ${y,m/u,n/u}$
  1. {10,-(1/2),3/2}
  2. {20,-(2/3),4/3}
  3. {65,-(1/3),8/3}
  4. {34,-(3/4),5/4}
  5. {226,-(1/4),15/4}
  6. {52,-(4/5),6/5}
  7. {73,-(3/5),8/5}
  8. {148,-(2/5),12/5}
  9. {265,-(1/5),23/5}
  10. {577,-(1/5),24/5}
  11. {74,-(5/6),7/6}
  12. {1226,-(1/6),35/6}
  13. {160,-(4/7),12/7}
  14. {580,-(2/7),24/7}
  15. {1105,-(1/7),47/7}
  16. {2305,-(1/7),48/7}
  17. {130,-(7/8),9/8}
  18. {450,-(3/8),21/8}
  19. {3970,-(1/8),63/8}
  20. {164,-(8/9),10/9}
  21. {281,-(5/9),16/9}
  22. {416,-(4/9),20/9}
  23. {1604,-(2/9),40/9}
  24. {241,-(1/9),64/9}
  25. {3121,-(1/9),79/9}
  26. {6401,-(1/9),80/9}
  27. {202,-(9/10),11/10}
  28. {1098,-(3/10),33/10}
  29. {9802,-(1/10),99/10}
  30. {244,-(10/11),12/11}
  31. {436,-(6/11),20/11}
  32. {601,-(5/11),24/11}
  33. {916,-(4/11),30/11}
  34. {1609,-(3/11),40/11}
  35. {3604,-(2/11),60/11}
  36. {7081,-(1/11),119/11}
  37. {14401,-(1/11),120/11}
  38. {290,-(11/12),13/12}
  39. {20450,-(1/12),143/12}
  40. {340,-(12/13),14/13}
  41. {505,-(8/13),21/13}
  42. {820,-(6/13),28/13}
  43. {1780,-(4/13),42/13}
  44. {3145,-(3/13),56/13}
  45. {7060,-(2/13),84/13}
  46. {13945,-(1/13),167/13}
  47. {28225,-(1/13),168/13}
  48. {394,-(13/14),15/14}
  49. {1546,-(5/14),39/14}
  50. {4234,-(3/14),65/14}
  51. {586,-(1/14),155/14}
  52. {38026,-(1/14),195/14}
  53. {452,-(14/15),16/15}
  54. {848,-(8/15),28/15}
  55. {1073,-(7/15),32/15}
  56. {3152,-(4/15),56/15}
  57. {12548,-(2/15),112/15}
  58. {2545,-(1/15),208/15}
  59. {24865,-(1/15),223/15}
  60. {50177,-(1/15),224/15}
  61. {514,-(15/16),17/16}
  62. {2626,-(5/16),51/16}
  63. {7234,-(3/16),85/16}
  64. {65026,-(1/16),255/16}
  65. {720,-(12/17),24/17}
  66. {1360,-(8/17),36/17}
  67. {865,-(7/17),41/17}
  68. {2340,-(6/17),48/17}
  69. {5200,-(4/17),72/17}
  70. {9225,-(3/17),96/17}
  71. {20740,-(2/17),144/17}
  72. {41185,-(1/17),287/17}
  73. {82945,-(1/17),288/17}
  74. {650,-(17/18),19/18}
  75. {104330,-(1/18),323/18}
  76. {724,-(18/19),20/19}
  77. {801,-(15/19),24/19}
  78. {1044,-(12/19),30/19}
  79. {1396,-(10/19),36/19}
  80. {2089,-(8/19),45/19}
  81. {3636,-(6/19),60/19}
  82. {5209,-(5/19),72/19}
  83. {8116,-(4/19),90/19}
  84. {14409,-(3/19),120/19}
  85. {32404,-(2/19),180/19}
  86. {6961,-(1/19),344/19}
  87. {64441,-(1/19),359/19}
  88. {129601,-(1/19),360/19}
  89. {802,-(19/20),21/20}
  90. {3298,-(7/20),57/20}
  91. {17698,-(3/20),133/20}
  92. {159202,-(1/20),399/20}
  93. {884,-(20/21),22/21}
  94. {1721,-(11/21),40/21}
  95. {2036,-(10/21),44/21}
  96. {3089,-(8/21),55/21}
  97. {7769,-(5/21),88/21}
  98. {12116,-(4/21),110/21}
  99. {2644,-(2/21),212/21}
  100. {48404,-(2/21),220/21}
  101. {96361,-(1/21),439/21}
  102. {193601,-(1/21),440/21}
  103. {970,-(21/22),23/22}
  104. {4810,-(7/22),69/22}
  105. {25930,-(3/22),161/22}
  106. {2314,-(1/22),411/22}
  107. {233290,-(1/22),483/22}
  108. {1060,-(22/23),24/23}
  109. {1345,-(16/23),33/23}
  110. {2080,-(12/23),44/23}
  111. {2425,-(11/23),48/23}
  112. {4420,-(8/23),66/23}
  113. {7780,-(6/23),88/23}
  114. {17440,-(4/23),132/23}
  115. {30985,-(3/23),176/23}
  116. {69700,-(2/23),264/23}
  117. {138865,-(1/23),527/23}
  118. {278785,-(1/23),528/23}
  119. {1154,-(23/24),25/24}
  120. {13250,-(5/24),115/24}
  121. {330626,-(1/24),575/24}
  122. {1252,-(24/25),26/25}
  123. {1777,-(16/25),39/25}
  124. {2473,-(13/25),48/25}
  125. {2848,-(12/25),52/25}
  126. {6148,-(8/25),78/25}
  127. {3985,-(7/25),89/25}
  128. {10852,-(6/25),104/25}
  129. {24352,-(4/25),156/25}
  130. {43273,-(3/25),208/25}
  131. {97348,-(2/25),312/25}
  132. {10273,-(1/25),591/25}
  133. {21745,-(1/25),608/25}
  134. {194065,-(1/25),623/25}
  135. {389377,-(1/25),624/25}
  136. {1354,-(25/26),27/26}
  137. {2250,-(15/26),45/26}
  138. {5706,-(9/26),75/26}
  139. {18250,-(5/26),135/26}
  140. {50634,-(3/26),225/26}
  141. {25546,-(1/26),659/26}
  142. {455626,-(1/26),675/26}
  143. {1460,-(26/27),28/27}
  144. {2900,-(14/27),52/27}
  145. {3305,-(13/27),56/27}
  146. {8345,-(8/27),91/27}
  147. {10865,-(7/27),104/27}
  148. {569,-(5/27),139/27}
  149. {33140,-(4/27),182/27}
  150. {132500,-(2/27),364/27}
  151. {5105,-(1/27),647/27}
  152. {11545,-(1/27),688/27}
  153. {264265,-(1/27),727/27}
  154. {529985,-(1/27),728/27}
复制代码

点评

是的。这个特解决定了对于任意的u都有解。  发表于 前天 08:46
另外总可以选择m=-(u-1),n=u+1,得到一组解$y=(u-1)^2+(u+1)^2=2u^2+2$  发表于 前天 08:11
已经要求m,n最小解时  发表于 前天 06:59
很显然ab>-1,说明|mn|<u^2  发表于 前天 06:58
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 前天 16:13 | 显示全部楼层
计算了10000项, 提交了一个数列.https://oeis.org/A386855 positive non-square integers of the form (a^2+b^2)/(1+ab) for rational numbers a and b.

点评

是的,Maple有条命令parametrization,可以直接给出亏格为0的曲线的参数表达式  发表于 前天 18:27
怎么计算的,对于每个y判断二次方程是否有有理解?  发表于 前天 17:53
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-8-8 17:04 , Processed in 0.041291 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表