找回密码
 欢迎注册
查看: 20860|回复: 7

[求助] 如何验证以下2条不等式是否成立?

[复制链接]
发表于 2013-5-10 01:16:26 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
我想验证以下2条不等式是否成立,但变量太多不知道如何入手。 不等式一: 当$n\geq 1$, $a_0\geq 0$, $a_1\geq 0$, $0\leq p_0\leq 1$, $0\leq p_1\leq 1$, $h_0\geq 0$, $h_1\geq 0$, $h_0+h_1=1$, $a_0*h_0+a_1*h_1+1=a$, $p_0*h_0+p_1*h_1=p$时, $p_0*h_0*((p_0*h_0)/(2^(a_0/p_0)))^(1/n)+p_1*h_1*((p_1*h_1)/(2^(a_1/p_1)))^(1/n)\geq p*(p/(2^(a/p)))^(1/n)$ 该不等式的TeX原文:【p_0*h_0*((p_0*h_0)/(2^(a_0/p_0)))^(1/n)+p_1*h_1*((p_1*h_1)/(2^(a_1/p_1)))^(1/n)\geq p*(p/(2^(a/p)))^(1/n)】 不等式二: 当$n\geq 1$, $a_0\geq 0$, $a_1\geq 0$, $0\leq p_0\leq 1$, $0\leq p_1\leq 1$, $w_0\geq 0$, $w_1\geq 0$, $w_0+w_1=1$, $a_0*w_0+a_1*w_1=a$, $p_0*w_0+p_1*w_1=p$时, $p_0*w_0*((p_0)/(2^(a_0/p_0)))^(1/n)+p_1*w_1*((p_1)/(2^(a_1/p_1)))^(1/n)\geq p*(p/(2^(a/p)))^(1/n)$ 该不等式的TeX原文:【p_0*w_0*((p_0)/(2^(a_0/p_0)))^(1/n)+p_1*w_1*((p_1)/(2^(a_1/p_1)))^(1/n)\geq p*(p/(2^(a/p)))^(1/n)】 请教各位大牛:是否可能手工验证? 如果不能,能否利用一些软件来帮助验证?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-5-10 08:01:46 | 显示全部楼层
做随机点吧 先根据三个等式,提取出变量最小集
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-5-10 10:15:35 | 显示全部楼层
这是个好方法——可以快速否定错误的不等式。 于是我对以上$2$个不等式均测试了$10^10$个数据, 结果都是成立的。 因此我们不能得出【某个不等式是错的】的结论。 即使如此,我们还是不能打包票说某个不等式是对的, 因为无法把所有可能的取值全部检验一遍。 如果我想打包票说【以上$2$个不等式都是对的】, 那么除了纯手工证明以外,是否还有别的办法?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-5-10 11:13:14 | 显示全部楼层

有校对错误?

第一个不等式的条件中,$a_0*h_0+a_1*h_1+1=a$应为$a_0*h_0+a_1*h_1=a$吧?

评分

参与人数 1经验 +3 收起 理由
KeyTo9_Fans + 3 要$+1$,不然不等式就不成立了~

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-5-10 23:11:48 | 显示全部楼层
做了下不等式二, 不知道下面的计算是否错误,得到不等式的大于等于号方向是唯一的 权重不等式约简1.jpg

评分

参与人数 1金币 +3 收起 理由
KeyTo9_Fans + 3 我也这样展开过,但第2步如何化简到第3步呀 ...

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-5-11 01:04:16 | 显示全部楼层
第二歩的两个项是无关的,所以取其中一个,因为底数都大于0, 而幂函数是增函数,所以单调,直接化简到第三歩了,但是后面的用0代换似乎有问题,可能是算错了,呵呵
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-5-11 01:14:30 | 显示全部楼层
哦,没仔细看题目, 0≤p0≤1 0≤p1≤1 0≤w0≤1 0≤w1≤1 这样在相应的位置要用1或0来替换了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-5-17 00:41:04 | 显示全部楼层
经过长达$7$天的手工验证可知,$2$条不等式都是对的 验证过程经过提炼只需$3$张A4纸就能写下。 等到我哪天又心血来潮的时候再把这$2$个不等式的问题背景和解答过程贴出来吧
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 21:00 , Processed in 0.026167 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表