找回密码
 欢迎注册
查看: 37693|回复: 7

[讨论] 方幂和

[复制链接]
发表于 2013-6-30 16:44:08 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
定义f(n)为能用两种方式表示成两个不同正整数的n次方幂的和的最小正整数,求f(n)的值
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-6-30 16:44:47 | 显示全部楼层
一些已经得到的结果:
$f(1)=5=1^1+4^1=2^1+3^1$
$f(2)=65=1^2+8^2=4^2+7^2$
$f(3)=1729=1^3+12^3=9^3+10^3$
$f(4)=635318657=59^4+158^4=133^4+134^4$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-8-27 21:40:41 | 显示全部楼层
$1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5 $
$160426514 = 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-8-27 21:42:29 | 显示全部楼层
http://oeis.org/search?q=5%2C65%2C1729&language=english&go=Search
Randy Ekl discovered that a number that can be written in two ways as a sum of two fifth powers exceeds 2^74 and one that can be written in two ways as a sum of two sixth powers exceeds 2^89. - Jonathan Vos Post, Nov 28 2007

According to the Mathworld links below, a(5) and a(6), if they exist, exceed 1.02*10^26 and 7.25*10^26, respectively. The page at the SquaresOfCubes link below says Stuart Gascoigne did an exhaustive search and found in Sep 2002 that no a(5) solution less than 3.26*x10^32 exists. My exhaustive search has determined that any solutions for n > 5, if they exist, must exceed 2^96 (about 7.92x10^28). - Jon E. Schoenfield (jonscho(AT)hiwaay.net), Dec 15 2008
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-8-28 11:28:53 | 显示全部楼层
不错!很有意思的帖子
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-8-28 11:31:18 | 显示全部楼层
Guy, Unsolved Problems In Number Theory, 3rd edition, D1, writes, "... it is not known if there is any nontrivial solution of a5+b5=c5+d5. Dick Lehmer once thought that there might be a solution with a sum of about 25 decimal digits, but a search by Blair Kelly yielded no nontrivial solution with sum ≤1.02×1026."

At F30, Guy writes, "... x5 is a likely answer to the following unsolved problem of Erdos. Find a polynomial P(x) such that all the sums P(a)+P(b) (0≤a<b) are distinct."

The book was published in 2004. I don't know whether there has been any progress since.

http://math.stackexchange.com/qu ... y-ramanujan-numbers
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-8-28 11:36:07 | 显示全部楼层
Hardy-Ramanujan Numbers
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-8-28 11:39:15 | 显示全部楼层
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 10:30 , Processed in 0.030011 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表