- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149497
- 在线时间
- 小时
|
发表于 2013-10-23 17:42:17
|
显示全部楼层
- #include <stdio.h>
- #include <limits.h>
- #include <string.h>
- #include <malloc.h>
- #define MAX_LEVEL 32
- typedef unsigned long DWORD;
- #if defined(_MSC_VER)
- typedef unsigned __int64 UINT64;
- #define UINT64_FMT "%I64u"
- #elif defined(__GNUC__)
- typedef unsigned long long UINT64;
- #define UINT64_FMT "%llu"
- #else
- #error don't support this compiler
- #endif
- const DWORD primes[]=
- {
- 2, 3, 5, 7, 11, 13, 17, 19,
- 23, 29, 31, 37, 41, 43, 47, 53,
- 59, 61, 67, 71, 73, 79, 83, 89,
- 97,101,103,107,109,113,127,131
- };
- typedef struct _searchContent_tag
- {
- struct search_tag
- {
- UINT64 PI; // product of some numbers
- UINT64 max;
- int idx; // the index in array pArr
- int maxIdx; // the index of last element
- UINT64* pArr; // the address of primes power table
- }arr[MAX_LEVEL];
- UINT64 min;
- UINT64 max;
- int maxLevel; //level
- }SRCH_CONTENT_ST;
- void initSearchContent(int level, UINT64 min, UINT64 max, SRCH_CONTENT_ST* p)
- {
- UINT64 prime,limit,pp;
- int i,c;
-
- memset(p,0,sizeof(SRCH_CONTENT_ST));
-
- p->maxLevel=level-1;
- p->max=max; p->min=min;
- p->arr[level-1].PI=1;
- p->arr[level-1].max=max;
- for (i=0;i<level;i++)
- {
- prime=primes[i];
- limit=ULLONG_MAX/prime;
-
- c=1;pp=1;
- while (pp<=limit) //pp is power of prime
- { pp*=prime;c++; }
-
- p->arr[i].pArr=(UINT64 *)malloc( sizeof(UINT64) * (c+1));
-
- p->arr[i].pArr[0]=pp=1; c=1;
- while (pp<=limit)
- { pp*=prime;p->arr[i].pArr[c++]=pp; }
-
- p->arr[i].maxIdx= c-1;
- }
- }
- void freeSearchContent( SRCH_CONTENT_ST* p)
- {
- int i;
- for (i=0;i<=p->maxLevel;i++)
- {
- if ( p->arr[i].pArr!=NULL)
- free(p->arr[i].pArr);
- }
- memset(p,0,sizeof(SRCH_CONTENT_ST));
- }
- //recursive form
- void searchSmoothNums1( SRCH_CONTENT_ST* p, int order)
- {
- int idx;
- /*
- recurrence formula
- p->arr[order].PI= 1;
- p->arr[i-1].PI = arr[i].pArr[ arr[i].idx] * arr[i+1].PI;
- p->arr[i].max= p->max / p->arr[i].PI;
- */
- if (order==0)
- {
- UINT64 min;
- UINT64 prod;
- min= (p->min + p->arr[0].PI -1)/p->arr[0].PI; // min >= p->min/PI( when p->min % PI==0, min= p->min/PI)
-
- if ( min > p->arr[0].max)
- return;
- idx=0;
- while (idx < p->arr[0].maxIdx && p->arr[0].pArr[idx]<min )
- idx++;
-
- while ( p->arr[0].pArr[idx] <= p->arr[0].max && idx <= p->arr[0].maxIdx )
- {
- prod= p->arr[0].PI * p->arr[0].pArr[idx];
- idx++;
- printf(UINT64_FMT"\n",prod);
- }
- }
- else
- {
- if ( p->arr[order].max==1 )
- {
- printf(UINT64_FMT"\n",p->arr[order].PI);
- return ;
- }
-
- for (idx=0;
- idx<= p->arr[order].maxIdx && p->arr[order].pArr[idx] <= p->arr[order].max;
- idx++ )
- {
- p->arr[order].idx=idx;
- p->arr[order-1].PI = p->arr[order].PI * p->arr[order].pArr[idx];
- p->arr[order-1].max= p->max / p->arr[order-1].PI;
- searchSmoothNums1(p,order-1); //call itselft
- }
-
- }
- }
- #define M_FILL 0 //fill mode
- #define M_INC 1 //increase mode
- // iterative form
- // search all p[order+1] smooth number which between p->min and p->max
- // For exmaple
- // order=0, search 2-smooth numbers
- // order=1, search 3-smooth numbers
- // order=2, search 5-smooth number
- void searchSmoothNums2( SRCH_CONTENT_ST* p, int order)
- {
- UINT64 prod;
- UINT64 PI;
- UINT64 min;
- int idx;
- int i=order;
- int mode=M_FILL;
- /*
- recurrence formula
- p->arr[order].PI= 1;
- p->arr[i-1].PI = arr[i].pArr[ arr[i].idx] * arr[i+1].PI;
- p->arr[i].max = p->max / arr[i].PI;
- */
-
- p->arr[order].PI=1;
- p->arr[order].max= p->max;
- while (i<=order)
- {
-
- if (mode==M_FILL) //fill mode
- {
- PI = p->arr[i].PI;
- if (i>0)
- {
- p->arr[i].idx=0;
- p->arr[i-1].PI = p->arr[i].PI; //p->arr[i-1].PI= p->arr[i].PI;
- p->arr[i-1].max= p->arr[i].max;
- i--; //forward to next level
- }
- else // i==0
- {
- min= (p->min + PI-1)/PI; // min >= p->min/PI( when p->min % PI==0, min= p->min/PI)
-
- if ( min > p->arr[0].max)
- {
- i++; // backtrace
- mode=M_INC;
- }
- else
- {
- idx=0;
- while (idx < p->arr[0].maxIdx && p->arr[0].pArr[idx]<min )
- idx++;
- if ( p->arr[0].pArr[idx] > p->arr[0].max || idx > p->arr[0].maxIdx)
- i++; // backtrace
- else //in this case, varible i don't change
- {
- p->arr[0].idx=idx;
- printf(UINT64_FMT"\n",PI * p->arr[0].pArr[idx]);
- }
- mode=M_INC; //change to increase mode
- }
- }
- }
- else //is increase mode
- {
- idx= p->arr[i].idx + 1;
- if (p->arr[i].pArr[idx] > p->arr[i].max || idx> p->arr[i].maxIdx)
- i++; // backtrace, mode don't change, still is increase mode
- else
- {
- p->arr[i].idx=idx;
- prod= p->arr[i].PI * p->arr[i].pArr[idx];
- if (i==0)
- printf(UINT64_FMT"\n",prod);
- else
- {
- p->arr[i-1].max= p->max / prod;
- if ( p->arr[i-1].max ==1)
- {
- printf(UINT64_FMT"\n",prod);
- i++; // backtrace, mode don't change, still is increase mode
- }
- else
- {
- p->arr[i-1].PI=prod;
- mode=M_FILL; // change mode to fill mode
- i--; // forward to next level
- }
- }
- }
- }
- }
- }
- void ref_searchSmoothNums(int order,UINT64 min, UINT64 max)
- {
- UINT64 i,m;
- int j,isSmooth;
- for (i=min;i<=max;i++)
- {
- for (m=i,isSmooth=0,j=0;j<order;j++)
- {
- while (m % primes[j]==0) m/=primes[j];
- if (m==1)
- { isSmooth=1; break; }
- }
- if (isSmooth)
- printf(UINT64_FMT"\n",i);
- }
- }
- void test()
- {
- SRCH_CONTENT_ST searchContent;
- UINT64 nMin,nMax;
- int cs;//case
- for (cs=0;cs<=1;cs++)
- {
- if (cs==0)
- { nMin=1; nMax=100; }
- else if (cs==1)
- { nMin=100; nMax=200; }
- initSearchContent(4,nMin,nMax,&searchContent);
-
- printf("\n\nSearch smooth number ref_searchSmoothNums-------\n");
- ref_searchSmoothNums(4,nMin,nMax);
-
- printf("\n\nSearch smooth number searchSmoothNums1-------\n");
- searchSmoothNums1( &searchContent,4-1);
-
- printf("\n\nSearch smooth number searchSmoothNums2-------\n");
- searchSmoothNums2( &searchContent,4-1);
- freeSearchContent( &searchContent);
- }
- }
- int main(int argc, char* argv[])
- {
- test();
- return 0;
- }
复制代码 1.什么是Smooth 数
如果一个整数的所有素因子都不大于B,我们称这个整数为B-Smooth数。用符号Pn表示表示第n个素数,例P1=2,P2=3,P3=5. 我们称素因子不大于Pn的Smooth数叫Pn-Smooth数。关于Smooth数更多的信息,请请参阅 Wiki词条 Smooth number http://en.wikipedia.org/wiki/Smooth_number. P1 到 P9-Smooth 数可参阅下面的数列,这些数列在On-Line Encycolpedia of Integer Sequences http://oeis.org 给出
 2-smooth numbers: A000079 (2^i, i>=0)
 3-smooth numbers: A003586 (2^i ×3^j,i,j>=0)
 5-smooth numbers: A051037 (2^i ×3^j×5^k, i,j,k>=0)
 7-smooth numbers: A002473 (2^i×3^j×5^k×7^l, i,j,k,l>=0)
 11-smooth numbers: A051038 (etc...)
 13-smooth numbers: A080197
 17-smooth numbers: A080681
 19-smooth numbers: A080682
 23-smooth numbers: A080683
2. 如何得到smooth数
基本上,我们有2种方法来生成一定范围内的smooth数。
1. 穷举法。基本方法是对指定范围内的每个数做分解素因数,如果其所有素因子都小于等于Pn,那个这个数就是Pn-smooth数。这种方法的优点是简单,缺点是速度较慢,只适合检查小范围内的整数。
2.构造法。其基本方法是用一个数组表示各个素因子的指数。例arr是一个数组,arr[1]表示素数p1(2)的指数,arr[2]表示素数p2(3)的指数,arr[3]表示素数p3(5)的指数. 欲求min和max之间的所有pn-smooth数, 则需要列举枚举这个数组的各个元素的取值。数组的各个元素的值需满足如下2个条件。
1. p[ i]>=0, 且p[ i] ^ arr[ i] <= max. (p[ i]表示第i个素数,i>=1,i<=n)
2. min <=p[1]^arr[1] * p[2]^arr[2] * p[3]^arr[3] * …p[n]*arr[n] <= max
对于一个包含n个元素的数组arr, 每个元素arr[ i] (1<=i<=n)各取一个数,就得到一个n维向量。如arr[1]=0, arr[2]=0, arr[3]=0可用3维向量(0,0,0)来表示,而arr[1]=1, arr[2]=0, arr[3]=0 则用3维向量(1,0,0)来表示。为了使得取得的所有n维向量既不重复也不遗漏。我们这里定义了比较2个n维向量的大小的规则
1. 如果2个n维向量a,b的所有分量都是相同的,我们说这两个n维向量是相同的。
2. 对于2个n维向量a,b(a的各个分量为a[1],a[2], …, a[n]),如果a[n]>b[n]我们说a>b.
3. 如果存在某个i,使得(1)对于所有的j (i<j<=n)都有a[j]=b[j]. (2) a[ i]>b[ i],那么我们说n维向量a>b.
我们列举每个n维向量时,总是从小到到的进行,先是(0,0,0), 然后是(1,0,0), 然后是(2,0,0)…,然后是(0,1,0), (1,1,0), (2,1,0).
未完待续
http://blog.csdn.net/liangbch/article/details/12186099 |
|