- 注册时间
 - 2009-6-9
 
- 最后登录
 - 1970-1-1
 
- 威望
 -  星
 
- 金币
 -  枚
 
- 贡献
 -  分
 
- 经验
 -  点
 
- 鲜花
 -  朵
 
- 魅力
 -  点
 
- 上传
 -  次
 
- 下载
 -  次
 
- 积分
 - 19993
 
- 在线时间
 -  小时
 
 
 
 
 
 
 | 
 
 
发表于 2013-12-16 19:23:02
|
显示全部楼层
 
 
 
对于椭圆$x^2/a^2+y^2/b^2=1$内弦长L的线段AB,且P点分$AP=m*PB$,则$P(x,y)$满足下列方程: 
$(m+1)^4*(a^2*b^2-a^2*y^2-b^2*x^2)^2*(a^8*b^4*m^4-2*a^8*b^2*m^4*y^2+a^8*m^4*y^4-2*a^6*b^6*m^4-2*a^6*b^4*m^4*x^2+4*a^6*b^4*m^4*y^2+2*a^6*b^2*m^4*x^2*y^2-2*a^6*b^2*m^4*y^4+$ 
$a^4*b^8*m^4+4*a^4*b^6*m^4*x^2-2*a^4*b^6*m^4*y^2+a^4*b^4*m^4*x^4-4*a^4*b^4*m^4*x^2*y^2+a^4*b^4*m^4*y^4-2*a^2*b^8*m^4*x^2-2*a^2*b^6*m^4*x^4+2*a^2*b^6*m^4*x^2*y^2+b^8*m^4*x^4-$ 
$4*a^8*b^4*m^3+4*a^8*m^3*y^4+8*a^6*b^6*m^3+8*a^6*b^4*m^3*x^2-8*a^6*b^4*m^3*y^2-4*a^4*b^8*m^3-8*a^4*b^6*m^3*x^2+8*a^4*b^6*m^3*y^2-4*a^4*b^4*m^3*x^4-$ 
$4*a^4*b^4*m^3*y^4+4*b^8*m^3*x^4+6*a^8*b^4*m^2+4*a^8*b^2*m^2*y^2+6*a^8*m^2*y^4-12*a^6*b^6*m^2-12*a^6*b^4*m^2*x^2+8*a^6*b^4*m^2*y^2-4*a^6*b^2*m^2*x^2*y^2+4*a^6*b^2*m^2*y^4+$ 
$6*a^4*b^8*m^2+8*a^4*b^6*m^2*x^2-12*a^4*b^6*m^2*y^2+6*a^4*b^4*m^2*x^4+40*a^4*b^4*m^2*x^2*y^2+6*a^4*b^4*m^2*y^4+4*a^2*b^8*m^2*x^2+4*a^2*b^6*m^2*x^4-4*a^2*b^6*m^2*x^2*y^2+$ 
$ 6*b^8*m^2*x^4-4*a^8*b^4*m+4*a^8*m*y^4+8*a^6*b^6*m+8*a^6*b^4*m*x^2-8*a^6*b^4*m*y^2-4*a^4*b^8*m-8*a^4*b^6*m*x^2+8*a^4*b^6*m*y^2-4*a^4*b^4*m*x^4-4*a^4*b^4*m*y^4+4*b^8*m*x^4+$ 
$a^8*b^4-2*a^8*b^2*y^2+a^8*y^4-2*a^6*b^6-2*a^6*b^4*x^2+4*a^6*b^4*y^2+2*a^6*b^2*x^2*y^2-2*a^6*b^2*y^4+a^4*b^8+4*a^4*b^6*x^2-2*a^4*b^6*y^2+a^4*b^4*x^4-4*a^4*b^4*x^2*y^2+$ 
$a^4*b^4*y^4-2*a^2*b^8*x^2-2*a^2*b^6*x^4+2*a^2*b^6*x^2*y^2+b^8*x^4)+8*m^2*a^2*b^2*(m+1)^2*(a^2*b^2-a^2*y^2-b^2*x^2)*(a^6*b^2*m^2*y^2-a^6*m^2*y^4-a^4*b^4*m^2*x^2-$ 
$a^4*b^4*m^2*y^2+a^4*b^2*m^2*y^4+a^2*b^6*m^2*x^2+a^2*b^4*m^2*x^4-b^6*m^2*x^4-2*a^6*b^2*m*y^2-2*a^6*m*y^4+2*a^4*b^4*m*x^2+2*a^4*b^4*m*y^2-4*a^4*b^2*m*x^2*y^2-$ 
$2*a^4*b^2*m*y^4-2*a^2*b^6*m*x^2-2*a^2*b^4*m*x^4-4*a^2*b^4*m*x^2*y^2-2*b^6*m*x^4+a^6*b^2*y^2-a^6*y^4-a^4*b^4*x^2-a^4*b^4*y^2+a^4*b^2*y^4+a^2*b^6*x^2+a^2*b^4*x^4-$ 
$ b^6*x^4)*L^2+16*a^4*b^4*m^4*(a^2*y^2+b^2*x^2)^2*L^4=0$ 
 
当P点为AB的中点时即$m=1,L=2*l $时 
$ 16*(L^2*a^4*b^2*y^2+L^2*a^2*b^4*x^2-4*a^6*b^2*y^2+4*a^6*y^4+4*a^4*b^2*x^2*y^2-4*a^2*b^6*x^2+4*a^2*b^4*x^2*y^2+4*b^6*x^4)^2=0$ 
即陈都得到的结果: 
http://bbs.emath.ac.cn/forum.php?mod=viewthread&tid=4216&extra=page%3D1&page=6 
56# 椭圆定长弦中点轨迹: 
$ (1-x^2/a^2-y^2/b^2)*(b^2*x^2/a^2+a^2*y^2/b^2)=(x^2/a^2+y^2/b^2)*l^2$ 
 |   
 
 
 
 |