- 注册时间
- 2014-1-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4905
- 在线时间
- 小时
|
楼主 |
发表于 2014-6-24 19:57:14
|
显示全部楼层
§3 分母有理化
作为\(\color{red}{对称多项式}\)的一个应用,我们来介绍分母有理化的方法.大家都知道;在计算分数时,常常需要把分数的分母化为有理数.这个过程,中学代数里叫做分母有理化.对于较简单的分数,例如;
\[\frac{3}{{\sqrt 2 }},\frac{5}{{1 + \sqrt 3 }},\frac{2}{{\sqrt 5 - 1}},\frac{2}{{1 + i}}\]
等等,很容易将它们有理化.但是对于较复杂的分数,例如。
\[\frac{1}{{1 + \sqrt 2 + \sqrt 3 }},\frac{5}{{1 + 3\sqrt[3]{2} + \sqrt[3]{4}}},\frac{1}{{\sqrt 5 + \sqrt[3]{3}}},\frac{1}{{1 + \sqrt 2 + \sqrt[3]{3}}}\]
的分母如何有理化,需要很高的技巧.因而有必要给出一个方法,利用它可以按步骤,将分数的分母有理化.对称多项式的理论可以提供这样一个方法,虽然它还不能彻底解决我们的问题,但它适用于相当广泛的一类分数.
定理设\(g\left( x \right) \ne 0\)是有理数域\(Q\)上的多项式,而\(\alpha\)为\(Q\)上\(n\)次多项式
\[f\left( x \right) = {x^n} - {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} - {a_3}{x^{n - 3}} + \dots + {\left( { - 1} \right)^n}{a_n}\]
的根(即\(f\left( \alpha \right) = 0\)),如果\(f\left( x \right) \)的\(n\)个根都不是\(g\left( x \right)\)的根,则可将分数
\[\frac{1}{{g\left( \alpha \right)}}\]
的分母有理化.
证明设\(f\left( x \right)\)的\(n\)个根为\({\alpha _1},{\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\left( {{\alpha _1} = \alpha } \right)\).把
\[\frac{1}{{g\left( \alpha \right)}}\]
的分子分母同乘以\(g\left( {{a_2}} \right)g\left( {{a_3}} \right) \dots g\left( {{a_n}} \right)\),得
\[\frac{1}{{g\left( \alpha \right)}} = \frac{{g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)}}{{g\left( {{\alpha _1}} \right)g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)}}\]
这时,\(g\left( {{\alpha _1}} \right)g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)是\(Q\)上\(n\)元多项式\(g\left( {{x_1}} \right)g\left( {{x_2}} \right)g\left( {{x_3}} \right) \dots g\left( {{x_n}} \right)\)在\({x_i} = {\alpha _i}\left( {i = 1,2, \dots ,n} \right)\)时的值.而\(g\left( {{x_1}} \right)g\left( {{x_2}} \right)g\left( {{x_3}} \right) \dots g\left( {{x_n}} \right)\)显然是对称多项式,故由上节推论,
推论: 设\(F\)上首项系数为\(1\)的一元多项式
\(f\left( x \right) = {x^n} - {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} - {a_3}{x^{n - 3}} + \dots + {\left( { - 1} \right)^n}{a_n}\)
并设\({\alpha _1},{\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\)为\(f\left( x \right)\)的个\(n\)根.这时\(F\)上的任意对称多项式\(g\left( {{x_1},{x_2}, \dots ,{x_n}} \right)\)在\({x_i} = {\alpha _i}\left( {i = 2, \dots ,n} \right)\)时的值\(g\left( {{\alpha _1},{\alpha _2}, \dots ,{\alpha _n}} \right)\)均为\(F\)中的数.
可知\(g\left( {{\alpha _1}} \right)g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)为\(Q\)中的数.即有理数.证明完了.
有了这个定理,我们自然会想到:如果有一个方法,在不知道\({\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\)的情况下,可将\(g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)计算出来,那么把分数
\[\frac{1}{{g\left( \alpha \right)}}\]
的分子分母同乘以\(g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)之后,就得到与\(\frac{1}{{g\left( \alpha \right)}}\)相等的分母为有理数的分数
\[\frac{{g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)}}{{g\left( {{\alpha _1}} \right)g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)}}\]
下面就来指出这样的方法.因为已知\({\alpha _1} = \alpha \)为\(f\left( x \right)\)的根.用\(x - \alpha \)除\(f\left( x \right)\)得
\[f\left( x \right) = \left( {x - \alpha } \right)q\left( x \right)\]
其中
\[q\left( x \right) = {x^{n - 1}} - {b_1}{x^{n - 2}} + \dots + {\left( { - 1} \right)^{n - 1}}{b_{n - 1}}\]
由于\({\alpha _1},{\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\)是\(f\left( x \right)\)的\(n\)个根,所以\({\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\),为\(q\left( x \right)\)的\(n - 1\)个根.而\(g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)是\(n - 1\)元对称多项式\(g\left( {{x_2}} \right)g\left( {{x_3}} \right) \dots g\left( {{x_n}} \right)\)在\({x_i} = {\alpha _i}\left( {i = 2, \dots ,n} \right)\)时的值,故由上节推论的证明过程知,可将\(g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)表为\({b_1},{b_2}, \dots ,{b_{n - 1}}\)的多项式.这样,就在不知道\({\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\)的情况下算出了\(g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right)\)
归纳以上的讨论,要把\(\frac{1}{{g\left( \alpha \right)}}\)的分母有理化,可按下列步骤进行:
1)先确定\(g\left( x \right)\),使\(x = \alpha \)时,\(g\left( \alpha \right)\)为已知的分母,
2)找出以\(\alpha \)为根的有理系数多项式\(f\left( x \right)\),并且使\(f\left( x \right)\)的所有的根都不是\(g\left( x \right)\)的根;
3)以\(x - \alpha \)除\(f\left( x \right)\),算出商式
\[q\left( x \right) = {x^{n - 1}} - {b_1}{x^{n - 2}} + \dots + {\left( { - 1} \right)^{n - 1}}{b_{n - 1}}\]
4)将\(n - 1\)元对称多项式\(g\left( {{x_2}} \right)g\left( {{x_3}} \right) \dots g\left( {{x_n}} \right)\)化为\({\sigma _1}\prime ,{\sigma _2}\prime , \dots ,\sigma {\prime _{n - 1}}\)的多项式\(\varphi \left( {{\sigma _1}\prime ,{\sigma _2}\prime , \dots ,\sigma {\prime _{n - 1}}} \right)\),这里\({\sigma _1}\prime ,{\sigma _2}\prime , \dots ,\sigma {\prime _{n - 1}}\)为\({x_2},{x_3}, \dots ,{x_n}\)的初等对称多项式.然后,再用\({b_i}\)代替\({\sigma _i}\prime \),得
\[\begin{gathered}
\varphi \left( {{\sigma _1}\prime ,{\sigma _2}\prime , \dots ,\sigma {\prime _{n - 1}}} \right) = \varphi \left( {{b_1},{b_2}, \dots ,{b_{n - 1}}} \right) \\
= g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right) \\
\end{gathered} \]
这里\({\alpha _2},{\alpha _3}, \dots ,{\alpha _n}\)。为\(q\left( x \right)\)的根.
5)用\(g\left( {{x_2}} \right)g\left( {{x_3}} \right) \dots g\left( {{x_n}} \right)\)同时乘\(\frac{1}{{g\left( \alpha \right)}}\)的分子、分母便实现了分母有理化.
例1 将分数
\[\frac{5}{{1 + 3\sqrt[3]{2} + \sqrt[3]{4}}}\]
分母有理化.
解:1)当取\(\alpha = \sqrt[3]{2}\)时,则有
\(g\left( x \right) = {x^2} + 3x + 1\)
使得\(g\left( \alpha \right)\)之值为原分数的分母。
2)以\(\alpha = \sqrt[3]{2}\)为根的多项式为
\[f\left( x \right) = {x^3} - 2\]
它是这样求出的:令\(x = \sqrt[3]{2}\)
两边立方得:\({x^3} = 2\)
从而知:\({x^3} - 2\)
必以\(\sqrt[3]{2}\)为根。
3)用综合除法求出以\(x - \sqrt[3]{2}\)除\(f\left( x \right)\)的商式:
\[\begin{array}{c|cc} {}
{} & 1&0&0&{ - 2} \\
\hline
{\sqrt[3]{2}} & 1&{\sqrt[3]{2}}&{{{\left( {\sqrt[3]{2}} \right)}^2}}&0
\end{array}\]
商式为
\[q\left( x \right) = {x^2} - \sqrt[3]{2}x + \sqrt[3]{4}\]
4)求\(g\left( {{x_2}} \right)g\left( {{x_3}} \right)\)之值,因为
\[g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) = \left( {\alpha _2^2 + 3{\alpha _2} + 1} \right)\left( {\alpha _3^2 + 3{\alpha _3} + 1} \right)\]
是关于\({\alpha _2},{\alpha _3}\)的对称多项式,可用关于\({\alpha _2},{\alpha _3}\)的初等对称多项式
\[\begin{gathered}
{\sigma _1}\prime = {b_1} = - \sqrt[3]{2} = {\alpha _2} + {\alpha _3} \\
{\sigma _2}\prime = {b_2} = \sqrt[3]{4} = {\alpha _2}{\alpha _3} \\
\end{gathered} \]
表出,即
\[\begin{gathered}
g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) = \alpha _2^2\alpha _3^2 + 3\left( {\alpha _2^2{\alpha _3} + {\alpha _2}\alpha _3^2} \right) + \left( {\alpha _2^2 + \alpha _3^2} \right) + 9{\alpha _2}{\alpha _3} + 3\left( {{\alpha _2} + {\alpha _3}} \right) + 1 \\
= {\left( {{\alpha _2}{\alpha _3}} \right)^2} + 3{\alpha _2}{\alpha _3}\left( {{\alpha _2} + {\alpha _3}} \right) + {\left( {{\alpha _2} + {\alpha _3}} \right)^2} - 2{\alpha _2}{\alpha _3} + 9{\alpha _2}{\alpha _3} + 3\left( {{\alpha _2} + {\alpha _3}} \right) + 1 \\
= b_2^2 + 3{b_1}{b_2} + b_1^2 + 7{b_2} + 3{b_1} + 1 \\
= {\sigma _1}{\prime ^2} + {\sigma _2}{\prime ^2} + 3{\sigma _1}\prime {\sigma _2}\prime + 3{\sigma _1}\prime + 7{\sigma _2}\prime + 1 \\
= {\left( { - \sqrt[3]{2}} \right)^2} + {\left( {\sqrt[3]{4}} \right)^2} + 3\sqrt[3]{4}\left( { - \sqrt[3]{2}} \right) + 3\left( { - \sqrt[3]{2}} \right) + 7\sqrt[3]{4} + 1 \\
= 8\sqrt[3]{4} - \sqrt[3]{2} - 5 \\
\end{gathered} \]
5)分子分母同倍以\(8\sqrt[3]{4} - \sqrt[3]{2} - 5\)得
\[\begin{gathered}
\frac{5}{{1 + 3\sqrt[3]{2} + \sqrt[3]{4}}} = \frac{{5\left( {8\sqrt[3]{4} - \sqrt[3]{2} - 5} \right)}}{{\left( {1 + 3\sqrt[3]{2} + \sqrt[3]{4}} \right)\left( {8\sqrt[3]{4} - \sqrt[3]{2} - 5} \right)}} \\
= \frac{{5\left( {8\sqrt[3]{4} - \sqrt[3]{2} - 5} \right)}}{{41}} \\
\end{gathered} \]
这里针对无理数分母,如何确定\(g\left( x \right)\)的构造,是值得注意的。它是与\(\alpha \)的选择有关的,在上例中,如取\(3\sqrt[3]{2} + \sqrt[3]{4}\)。
则\(g\left( x \right)\)将是
\[g\left( x \right) = x + 1\]
此时\(g\left( x \right)\)的构造虽然简单了,但以\(\alpha \)为根的,\(f\left( x \right)\)将复杂些.因为,
如令
\[\begin{gathered}
x = 3\sqrt[3]{2} + \sqrt[3]{4} \\
{x^3} = 58 + 54\sqrt[3]{2} + 18\sqrt[3]{4} \\
= 58 + 18\left( {3\sqrt[3]{2} + \sqrt[3]{4}} \right) \\
= 58 + 18x \\
\end{gathered} \]
即以\(3\sqrt[3]{2} + \sqrt[3]{4}\)为根的多项式为
\[f\left( x \right) = {x^3} - 58 - 18x\]
所以,\(\alpha \)的选法对计算量的大小是有关的,但无论如何,\(g\left( x \right)\)总是存在的.这只要选整个分母为\(\alpha \),\(g\left( x \right)=x\)就可以了。有时可能会复杂些,但总是可行的。
例2 将分数
\[\frac{1}{{\sqrt 5 + \sqrt[3]{3}}}\]
的分母有理化
解:1)取\[\alpha = \sqrt 5 + \sqrt[3]{3}\],于是\(g\left( x \right)=x\),使得\(g\left(\alpha \right)\)之值为原分数的分母.
2)求以\(\alpha \)为根的有理系数多项式\(f\left( x \right)\).为此,令\(x = \sqrt 5 + \sqrt[3]{3}\)移项得:\(x - \sqrt 5 = \sqrt[3]{3}\)
将上式两边立方得:\({x^3} - 3\sqrt 5 {x^2} + 15x - 5\sqrt 5 = 3\)
移项得:\({x^3} + 15x - 3 = \sqrt 5 \left( {3{x^2} + 5} \right)\)
两端同时平方,得:\({x^6} - 15{x^4} - 6{x^3} + 75{x^2} - 90x - 116 = 0\)
因此,以\(\sqrt 5 + \sqrt[3]{3}\)为根的有理系数多项式为
\[f\left( x \right) = {x^6} - 15{x^4} - 6{x^3} + 75{x^2} - 90x - 116\]
3)以\(x - \sqrt 5 + \sqrt[3]{3}\)除\(f\left( x \right)\)得商式
\[q\left( x \right) = {x^5} - {b_1}{x^4} + {b_2}{x^3} - {b_3}{x^2} + {b_4}x - {b_5}\]
其中
\[\begin{gathered}
- {b_1} = \sqrt 5 + \sqrt[3]{3} \\
{b_2} = - 10 + \sqrt[3]{9} + 2\sqrt 5 \sqrt[3]{3} \\
- {b_3} = - 3 - 10\sqrt 5 + 3\sqrt 5 \sqrt[3]{9} \\
{b_4} = 25 + 6\sqrt 5 - 3\sqrt[3]{3} + 15\sqrt[3]{9} - 10\sqrt 5 \sqrt[3]{3} \\
- {b_5} = - 15 + 25\sqrt 5 - 25\sqrt[3]{3} - 3\sqrt[3]{9} + 5\sqrt 5 \sqrt[3]{9} + 3\sqrt 5 \sqrt[3]{3} \\
\end{gathered} \]
4)将\(g\left( {{x_2}} \right) \dots g\left( {{x_6}} \right)\)表为\({\sigma _1}\prime ,{\sigma _2}\prime ,{\sigma _3}\prime ,{\sigma _4}\prime ,{\sigma _5}\prime \)的多项式:
\[g\left( {{x_2}} \right) \dots g\left( {{x_6}} \right) = {x_2}{x_3} \dots {x_6} = {\sigma _5}\prime \]
于是\(g\left( {{\alpha _2}} \right) \dots g\left( {{\alpha _6}} \right) = {\alpha _2}{\alpha _3} \dots {\alpha _6} = {b_5}\)
5) \(\frac{1}{{\sqrt 5 + \sqrt[3]{3}}}\)
\[\begin{gathered}
= \frac{{g\left( {{\alpha _2}} \right) \dots g\left( {{\alpha _6}} \right)}}{{\left( {\sqrt 5 + \sqrt[3]{3}} \right)g\left( {{\alpha _2}} \right) \dots g\left( {{\alpha _6}} \right)}} = \frac{{{b_5}}}{{\left( {\sqrt 5 + \sqrt[3]{3}} \right){b_5}}} \\
= \frac{{ - 15 + 25\sqrt 5 - 25\sqrt[3]{3} - 3\sqrt[3]{9} + 5\sqrt 5 \sqrt[3]{9} + 3\sqrt 5 \sqrt[3]{3}}}{{\left( {\sqrt 5 + \sqrt[3]{3}} \right)\left( { - 15 + 25\sqrt 5 - 25\sqrt[3]{3} - 3\sqrt[3]{9} + 5\sqrt 5 \sqrt[3]{9} + 3\sqrt 5 \sqrt[3]{3}} \right)}} \\
= \frac{{ - 15 + 25\sqrt 5 - 25\sqrt[3]{3} - 3\sqrt[3]{9} + 5\sqrt 5 \sqrt[3]{9} + 3\sqrt 5 \sqrt[3]{3}}}{{116}} \\
\end{gathered} \]
由上述推导看到,采用例2的方法来选取\(\alpha\)与\(g\left( x \right)\),可以由已给的分数立刻确定.除此之外,在解例2的过程中还可以看到,步骤4)与5)也可以不必计算而写出结果.事实上,总有
\[\begin{gathered}
g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right) = {\alpha _2}{\alpha _3} \dots {\alpha _n} = {b_{n - 1}} \\
g\left( {{\alpha _1}} \right)g\left( {{\alpha _2}} \right)g\left( {{\alpha _3}} \right) \dots g\left( {{\alpha _n}} \right) = {\alpha _1}{\alpha _2} \dots {\alpha _n} = {a_n} \\
\end{gathered} \]
而\({b_{n - 1}}\)和\({a_n}\)已经在步骤2)和3)中计算出结果了,虽然如此,对于较复杂的分数的分母,用例2的方法求\(f\left( x \right)\)和\(q\left( x \right)\)的计算工作还是相当繁重的。 |
|