- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
1.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant \alpha \lt \beta \lt \gamma \lt 2\pi\) ,且
\[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
\[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
\[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?
2.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant \alpha \lt \beta \lt \gamma \lt 2\pi\) ,且
\[x=\frac{\cos(\alpha)\sin(\frac{\beta-\gamma}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
\[y=\frac{\sin(\alpha)\sin(\frac{\beta-\gamma}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
\[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\beta-\gamma}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?
3.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant \alpha \lt \beta \lt \gamma \lt 2\pi\) ,且
\[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\alpha-\gamma}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
\[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\alpha-\gamma}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
\[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\alpha-\gamma}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]
猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?
4.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant \alpha \lt \beta \lt \gamma \lt 2\pi \),且
\[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\alpha-\beta}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\alpha-\beta}{2})}\]
\[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\alpha-\beta}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\alpha-\beta}{2})}\]
\[z=\frac{2\sin(\frac{\alpha-\beta}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\alpha-\beta}{2})}\]
猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?
注:甘志国猜测2,3,4满足同一个关系式。
转自:http://www.cdmath.org/Article/ShowArticle.asp?ArticleID=973
|
|