找回密码
 欢迎注册
查看: 34922|回复: 9

[讨论] 甘志国的“三角函数关系求解”问题

[复制链接]
发表于 2014-8-17 10:57:02 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
1.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant  \alpha \lt  \beta \lt  \gamma \lt  2\pi\) ,且

     \[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

       猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?



2.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant  \alpha \lt  \beta \lt  \gamma \lt  2\pi\) ,且

     \[x=\frac{\cos(\alpha)\sin(\frac{\beta-\gamma}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[y=\frac{\sin(\alpha)\sin(\frac{\beta-\gamma}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\beta-\gamma}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

       猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?


3.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant  \alpha \lt  \beta \lt  \gamma \lt  2\pi\) ,且

     \[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\alpha-\gamma}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\alpha-\gamma}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\alpha-\gamma}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

       猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?


4.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant  \alpha \lt  \beta \lt  \gamma \lt  2\pi \),且

     \[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\alpha-\beta}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\alpha-\beta}{2})}\]

     \[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\alpha-\beta}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\alpha-\beta}{2})}\]

     \[z=\frac{2\sin(\frac{\alpha-\beta}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\alpha-\beta}{2})}\]

       猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?

注:甘志国猜测2,3,4满足同一个关系式。

转自:http://www.cdmath.org/Article/ShowArticle.asp?ArticleID=973

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-8-17 17:42:46 | 显示全部楼层
有趣的是:

将\(\alpha=\frac{\pi}{2},\frac{\pi}{3},\frac{\pi}{4},\frac{\pi}{5}\)的函数图像叠合在一起,很像‘’燕子‘’的形状:

三角函数关系.gif
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-8-17 18:12:21 | 显示全部楼层
取\(\alpha=0\),消元结果:

\(x^6+4x^5z+3x^4y^2+4x^4z^2+8x^3y^2z+3x^2y^4+8x^2y^2z^2+4xy^4z+y^6+4y^4z^2-2x^5-4x^4z-4x^3y^2-8x^2y^2z-2xy^4-4y^4z-5x^4-24x^3z-6x^2y^2-24x^2z^2-24xy^2z-y^4-24y^2z^2+
20x^3+56x^2z+12xy^2+32xz^2+24y^2z-25x^2-44xz-5y^2-12z^2+14x+12z-3=0\)

看来\(x,y,z\)的关系式没这么简单,更不可能是二次关系啦!


取\(\alpha=\frac{\pi}{3}\),消元结果:

\(x^{12}+4x^{11}z+6x^{10}y^2+12x^{10}z^2+20x^9y^2z+16x^9z^3+15x^8y^4+44x^8y^2z^2+16x^8z^4+40x^7y^4z+64x^7y^2z^3+20x^6y^6+56x^6y^4z^2+64x^6y^2z^4+40x^5y^6z+96x^5y^4z^3+15x^4y^8+
24x^4y^6z^2+96x^4y^4z^4+20x^3y^8z+64x^3y^6z^3+6x^2y^{10}-4x^2y^8z^2+64x^2y^6z^4+4xy^{10}z+16xy^8z^3+y^{12}-4y^{10}z^2+16y^8z^4-2x^{11}-12x^{10}z-10x^9y^2-24x^9z^2-44x^8y^2z-
32x^8z^3-20x^7y^4-96x^7y^2z^2-56x^6y^4z-128x^6y^2z^3-20x^5y^6-144x^5y^4z^2-24x^4y^6z-192x^4y^4z^3-10x^3y^8-96x^3y^6z^2+4x^2y^8z-128x^2y^6z^3-2xy^{10}-24xy^8z^2+4y^{10}z-32y^8z^3-3x^{10}-
24x^9z-23x^8y^2-96x^8z^2-80x^7y^2z-192x^7z^3-62x^6y^4-208x^6y^2z^2-192x^6z^4-96x^5y^4z-576x^5y^2z^3-78x^4y^6-48x^4y^4z^2-576x^4y^2z^4-48x^3y^6z-576x^3y^4z^3-47x^2y^8+144x^2y^6z^2-
576x^2y^4z^4-8xy^8z-192xy^6z^3-11y^{10}+80y^8z^2-192y^6z^4+18x^9+132x^8z+80x^7y^2+360x^7z^2+376x^6y^2z+512x^6z^3+132x^5y^4+1016x^5y^2z^2+128x^5z^4+304x^4y^4z+1408x^4y^2z^3+96x^3y^6+952x^3y^4z^2+
256x^3y^2z^4+8x^2y^6z+1280x^2y^4z^3+26xy^8+296xy^6z^2+128xy^4z^4-52y^8z+384y^6z^3-30x^8-156x^7z-92x^6y^2-240x^6z^2-484x^5y^2z+224x^5z^3-64x^4y^4-928x^4y^2z^2+480x^4z^4-500x^3y^4z+448x^3y^2z^3+
28x^2y^6-1136x^2y^4z^2+960x^2y^2z^4-172xy^6z+224xy^4z^3+30y^8-448y^6z^2+480y^4z^4+6x^7-120x^6z+26x^5y^2-864x^5z^2+56x^4y^2z-1728x^4z^3+2x^3y^4-1216x^3y^2z^2-768x^3z^4+408x^2y^4z-2688x^2y^2z^3-18xy^6-
352xy^4z^2-768xy^2z^4+232y^6z-960y^4z^3+69x^6+684x^5z+43x^4y^2+2184x^4z^2+584x^3y^2z+2368x^3z^3-9x^2y^4+2208x^2y^2z^2+832x^2z^4+156xy^4z+1344xy^2z^3-47y^6+792y^4z^2-192y^2z^4-
162x^5-1140x^4z-28x^3y^2-2520x^3z^2-512x^2y^2z-2048x^2z^3-26xy^4-664xy^2z^2-384xz^4-300y^4z+384y^2z^3+210x^4+1128x^3z-32x^2y^2+1860x^2z^2-8xy^2z+912xz^3+46y^4-348y^2z^2+144z^4-182x^3-740x^2z+
50xy^2-792xz^2+156y^2z-288z^3+109x^2+300xz-27y^2+216z^2-42x-72z+9=0\)

这说明:\(x,y,z\)之间的关系并不是确定的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-8-18 11:54:08 | 显示全部楼层
如果存在方程f(x,y,z)=0,代入后可得到f(x(α,β,γ),y(α,β,γ),z(α,β,γ))=0, 即存在约束g(α,β,γ)=0。但是甘志国给出的条件中,α,β,γ是独立变量,不存在约束关系。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-8-18 12:06:37 | 显示全部楼层
以第1个问题为例,可以设
`x=\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})`
`y=\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})`
`z=2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\beta}{2})\sin(\frac{\gamma-\alpha}{2})`
`w=\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})`
从以上四式中消元可以得到`f(x,y,z,w)=0`, 如果甘志国的猜想成立,`f(x,y,z,w)=0`应该可以化为`f(x/w,y/w,z/w,1)=0`. 也就是说,如果`f(x,y,z,w)`是一个多项式的话,应该是一个齐次式。

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-8-18 22:03:56 | 显示全部楼层
对于第1问:



若\(\alpha+\beta+\gamma=\pi\),我们可以得到:

  1. x^16-4*x^15*z+8*x^14*y^2+4*x^14*z^2-12*x^13*y^2*z+28*x^12*y^4+28*x^12*y^2*z^2+12*x^11*y^4*z+56*x^10*y^6+84*x^10*y^4*z^2+100*x^9*y^6*z+70*x^8*y^8+140*x^8*y^6*z^2+180*x^7*y^8*z+56*x^6*y^10+140*x^6*y^8*z^2+156*x^5*y^10*z+28*x^4*y^12+84*x^4*y^10*z^2+68*x^3*y^12*z+8*x^2*y^14+28*x^2*y^12*z^2+12*x*y^14*z+y^16+4*y^14*z^2-8*x^15+40*x^14*z-24*x^13*y^2-56*x^13*z^2-8*x^12*y^2*z+16*x^12*z^3+24*x^11*y^4+176*x^11*y^2*z^2-120*x^10*y^4*z-192*x^10*y^2*z^3+200*x^9*y^6-200*x^9*y^4*z^2+408*x^8*y^6*z-432*x^8*y^4*z^3+360*x^7*y^8-96*x^7*y^6*z^2+1272*x^6*y^8*z+312*x^5*y^10+1464*x^5*y^8*z^2+1128*x^4*y^10*z+432*x^4*y^8*z^3+136*x^3*y^12+1200*x^3*y^10*z^2+344*x^2*y^12*z+192*x^2*y^10*z^3+24*x*y^14+72*x*y^12*z^2+8*y^14*z-16*y^12*z^3+12*x^14-120*x^13*z+84*x^12*y^2+288*x^12*z^2-240*x^11*y^2*z-192*x^11*z^3+252*x^10*y^4-720*x^10*y^2*z^2+16*x^10*z^4+600*x^9*y^4*z+960*x^9*y^2*z^3+420*x^8*y^6-1392*x^8*y^4*z^2+80*x^8*y^2*z^4+2400*x^7*y^6*z-1920*x^7*y^4*z^3+420*x^6*y^8+3040*x^6*y^6*z^2+160*x^6*y^4*z^4+3000*x^5*y^8*z+896*x^5*y^6*z^3+252*x^4*y^10+5952*x^4*y^8*z^2+160*x^4*y^6*z^4+1680*x^3*y^10*z+4160*x^3*y^8*z^3+84*x^2*y^12+2544*x^2*y^10*z^2+80*x^2*y^8*z^4+360*x*y^12*z+192*x*y^10*z^3+12*y^14+16*y^12*z^2+16*y^10*z^4+48*x^13-28*x^12*z+96*x^11*y^2-544*x^11*z^2+984*x^10*y^2*z+864*x^10*z^3-240*x^9*y^4-1120*x^9*y^2*z^2-224*x^9*z^4+2268*x^8*y^4*z-2304*x^8*y^2*z^3-960*x^7*y^6+4800*x^7*y^4*z^2+1152*x^7*y^2*z^4+720*x^6*y^6*z-192*x^6*y^4*z^3-1200*x^5*y^8+8512*x^5*y^6*z^2-2880*x^5*y^4*z^4-1188*x^4*y^8*z+10112*x^4*y^6*z^3-672*x^3*y^10+4960*x^3*y^8*z^2+4224*x^3*y^6*z^4-552*x^2*y^10*z+7264*x^2*y^8*z^3-144*x*y^12+1824*x*y^10*z^2+288*x*y^8*z^4+100*y^12*z+128*y^10*z^3-120*x^12+724*x^11*z-720*x^10*y^2-464*x^10*z^2+724*x^9*y^2*z-1504*x^9*z^3-1800*x^8*y^4+5888*x^8*y^2*z^2+1184*x^8*z^4-4344*x^7*y^4*z-1152*x^7*y^2*z^3-64*x^7*z^5-2400*x^6*y^6+6304*x^6*y^4*z^2-5056*x^6*y^2*z^4-10136*x^5*y^6*z+13248*x^5*y^4*z^3+64*x^5*y^2*z^5-1800*x^4*y^8-6464*x^4*y^6*z^2+3840*x^4*y^4*z^4-7964*x^3*y^8*z+9600*x^3*y^6*z^3+320*x^3*y^4*z^5-720*x^2*y^10-5968*x^2*y^8*z^2+10176*x^2*y^6*z^4-2172*x*y^10*z+4896*x*y^8*z^3+192*x*y^6*z^5-120*y^12+448*y^10*z^2+96*y^8*z^4-120*x^11-720*x^10*z-120*x^9*y^2+3184*x^9*z^2-5328*x^8*y^2*z-864*x^8*z^3+720*x^7*y^4+288*x^7*y^2*z^2-2624*x^7*z^4-9504*x^6*y^4*z+14112*x^6*y^2*z^3+640*x^6*z^5+1680*x^5*y^6-20160*x^5*y^4*z^2+2624*x^5*y^2*z^4-6816*x^4*y^6*z+672*x^4*y^4*z^3-2688*x^4*y^2*z^5+1320*x^3*y^8-24864*x^3*y^6*z^2+13120*x^3*y^4*z^4-2832*x^2*y^8*z-13216*x^2*y^6*z^3+4992*x^2*y^4*z^5+360*x*y^10-9648*x*y^8*z^2+7872*x*y^6*z^4-912*y^10*z+1088*y^8*z^3+128*y^6*z^5+412*x^10-1616*x^9*z+2060*x^8*y^2-2340*x^8*z^2+6944*x^7*z^3+4120*x^6*y^4-18432*x^6*y^2*z^2+496*x^6*z^4+9696*x^5*y^4*z-6944*x^5*y^2*z^3-2176*x^5*z^5+4120*x^4*y^6-17064*x^4*y^4*z^2+14736*x^4*y^2*z^4+64*x^4*z^6+12928*x^3*y^6*z-34720*x^3*y^4*z^3+4352*x^3*y^2*z^5+2060*x^2*y^8-4320*x^2*y^6*z^2-7344*x^2*y^4*z^4+128*x^2*y^2*z^6+4848*x*y^8*z-20832*x*y^6*z^3+6528*x*y^4*z^5+412*y^10-3348*y^8*z^2+1968*y^6*z^4+64*y^4*z^6+160*x^9+2684*x^8*z-5856*x^7*z^2+11888*x^6*y^2*z-6048*x^6*z^3-960*x^5*y^4+5856*x^5*y^2*z^2+7712*x^5*z^4+16488*x^4*y^4*z-28800*x^4*y^2*z^3+2112*x^4*z^5-1280*x^3*y^6+29280*x^3*y^4*z^2-15424*x^3*y^2*z^4-512*x^3*z^6+10096*x^2*y^6*z-11040*x^2*y^4*z^3+4224*x^2*y^2*z^5-480*x*y^8+17568*x*y^6*z^2-23136*x*y^4*z^4+1536*x*y^2*z^6+2812*y^8*z-7232*y^6*z^3+2112*y^4*z^5-750*x^8+1764*x^7*z-3000*x^6*y^2+8356*x^6*z^2-1764*x^5*y^2*z-9120*x^5*z^3-4500*x^4*y^4+28380*x^4*y^2*z^2-9552*x^4*z^4-8820*x^3*y^4*z+18240*x^3*y^2*z^3+3264*x^3*z^5-3000*x^2*y^6+22860*x^2*y^4*z^2-19104*x^2*y^2*z^4+1152*x^2*z^6-5292*x*y^6*z+27360*x*y^4*z^3-9792*x*y^2*z^5-750*y^8+8724*y^6*z^2-9552*y^4*z^4+1152*y^2*z^6-120*x^7-4376*x^6*z+120*x^5*y^2+4616*x^5*z^2-13416*x^4*y^2*z+14960*x^4*z^3+600*x^3*y^4-9232*x^3*y^2*z^2-5376*x^3*z^4-12936*x^2*y^4*z+29920*x^2*y^2*z^3-6912*x^2*z^5+360*x*y^6-13848*x*y^4*z^2+16128*x*y^2*z^4-4408*y^6*z+14960*y^4*z^3-6912*y^2*z^5+804*x^6-952*x^5*z+2412*x^4*y^2-10920*x^4*z^2+1904*x^3*y^2*z+3872*x^3*z^3+2412*x^2*y^4-21840*x^2*y^2*z^2+13824*x^2*z^4+2856*x*y^4*z-11616*x*y^2*z^3+804*y^6-10920*y^4*z^2+13824*y^2*z^4-1728*z^6+48*x^5+3804*x^4*z-96*x^3*y^2-1344*x^3*z^2+7608*x^2*y^2*z-13248*x^2*z^3-144*x*y^4+4032*x*y^2*z^2+3804*y^4*z-13248*y^2*z^3+5184*z^5-512*x^4+204*x^3*z-1024*x^2*y^2+6696*x^2*z^2-612*x*y^2*z-512*y^4+6696*y^2*z^2-6480*z^4-8*x^3-1728*x^2*z+24*x*y^2-1728*y^2*z+4320*z^3+180*x^2+180*y^2-1620*z^2+324*z-27=0
复制代码



若\(\alpha+\beta+\gamma=2\pi\),我们可以得到:

  1. x^16+4*x^15*z+8*x^14*y^2+4*x^14*z^2+12*x^13*y^2*z+28*x^12*y^4+28*x^12*y^2*z^2-12*x^11*y^4*z+56*x^10*y^6+84*x^10*y^4*z^2-100*x^9*y^6*z+70*x^8*y^8+140*x^8*y^6*z^2-180*x^7*y^8*z+56*x^6*y^10+140*x^6*y^8*z^2-156*x^5*y^10*z+28*x^4*y^12+84*x^4*y^10*z^2-68*x^3*y^12*z+8*x^2*y^14+28*x^2*y^12*z^2-12*x*y^14*z+y^16+4*y^14*z^2+8*x^15+40*x^14*z+24*x^13*y^2+56*x^13*z^2-8*x^12*y^2*z+16*x^12*z^3-24*x^11*y^4-176*x^11*y^2*z^2-120*x^10*y^4*z-192*x^10*y^2*z^3-200*x^9*y^6+200*x^9*y^4*z^2+408*x^8*y^6*z-432*x^8*y^4*z^3-360*x^7*y^8+96*x^7*y^6*z^2+1272*x^6*y^8*z-312*x^5*y^10-1464*x^5*y^8*z^2+1128*x^4*y^10*z+432*x^4*y^8*z^3-136*x^3*y^12-1200*x^3*y^10*z^2+344*x^2*y^12*z+192*x^2*y^10*z^3-24*x*y^14-72*x*y^12*z^2+8*y^14*z-16*y^12*z^3+12*x^14+120*x^13*z+84*x^12*y^2+288*x^12*z^2+240*x^11*y^2*z+192*x^11*z^3+252*x^10*y^4-720*x^10*y^2*z^2+16*x^10*z^4-600*x^9*y^4*z-960*x^9*y^2*z^3+420*x^8*y^6-1392*x^8*y^4*z^2+80*x^8*y^2*z^4-2400*x^7*y^6*z+1920*x^7*y^4*z^3+420*x^6*y^8+3040*x^6*y^6*z^2+160*x^6*y^4*z^4-3000*x^5*y^8*z-896*x^5*y^6*z^3+252*x^4*y^10+5952*x^4*y^8*z^2+160*x^4*y^6*z^4-1680*x^3*y^10*z-4160*x^3*y^8*z^3+84*x^2*y^12+2544*x^2*y^10*z^2+80*x^2*y^8*z^4-360*x*y^12*z-192*x*y^10*z^3+12*y^14+16*y^12*z^2+16*y^10*z^4-48*x^13-28*x^12*z-96*x^11*y^2+544*x^11*z^2+984*x^10*y^2*z+864*x^10*z^3+240*x^9*y^4+1120*x^9*y^2*z^2+224*x^9*z^4+2268*x^8*y^4*z-2304*x^8*y^2*z^3+960*x^7*y^6-4800*x^7*y^4*z^2-1152*x^7*y^2*z^4+720*x^6*y^6*z-192*x^6*y^4*z^3+1200*x^5*y^8-8512*x^5*y^6*z^2+2880*x^5*y^4*z^4-1188*x^4*y^8*z+10112*x^4*y^6*z^3+672*x^3*y^10-4960*x^3*y^8*z^2-4224*x^3*y^6*z^4-552*x^2*y^10*z+7264*x^2*y^8*z^3+144*x*y^12-1824*x*y^10*z^2-288*x*y^8*z^4+100*y^12*z+128*y^10*z^3-120*x^12-724*x^11*z-720*x^10*y^2-464*x^10*z^2-724*x^9*y^2*z+1504*x^9*z^3-1800*x^8*y^4+5888*x^8*y^2*z^2+1184*x^8*z^4+4344*x^7*y^4*z+1152*x^7*y^2*z^3+64*x^7*z^5-2400*x^6*y^6+6304*x^6*y^4*z^2-5056*x^6*y^2*z^4+10136*x^5*y^6*z-13248*x^5*y^4*z^3-64*x^5*y^2*z^5-1800*x^4*y^8-6464*x^4*y^6*z^2+3840*x^4*y^4*z^4+7964*x^3*y^8*z-9600*x^3*y^6*z^3-320*x^3*y^4*z^5-720*x^2*y^10-5968*x^2*y^8*z^2+10176*x^2*y^6*z^4+2172*x*y^10*z-4896*x*y^8*z^3-192*x*y^6*z^5-120*y^12+448*y^10*z^2+96*y^8*z^4+120*x^11-720*x^10*z+120*x^9*y^2-3184*x^9*z^2-5328*x^8*y^2*z-864*x^8*z^3-720*x^7*y^4-288*x^7*y^2*z^2+2624*x^7*z^4-9504*x^6*y^4*z+14112*x^6*y^2*z^3+640*x^6*z^5-1680*x^5*y^6+20160*x^5*y^4*z^2-2624*x^5*y^2*z^4-6816*x^4*y^6*z+672*x^4*y^4*z^3-2688*x^4*y^2*z^5-1320*x^3*y^8+24864*x^3*y^6*z^2-13120*x^3*y^4*z^4-2832*x^2*y^8*z-13216*x^2*y^6*z^3+4992*x^2*y^4*z^5-360*x*y^10+9648*x*y^8*z^2-7872*x*y^6*z^4-912*y^10*z+1088*y^8*z^3+128*y^6*z^5+412*x^10+1616*x^9*z+2060*x^8*y^2-2340*x^8*z^2-6944*x^7*z^3+4120*x^6*y^4-18432*x^6*y^2*z^2+496*x^6*z^4-9696*x^5*y^4*z+6944*x^5*y^2*z^3+2176*x^5*z^5+4120*x^4*y^6-17064*x^4*y^4*z^2+14736*x^4*y^2*z^4+64*x^4*z^6-12928*x^3*y^6*z+34720*x^3*y^4*z^3-4352*x^3*y^2*z^5+2060*x^2*y^8-4320*x^2*y^6*z^2-7344*x^2*y^4*z^4+128*x^2*y^2*z^6-4848*x*y^8*z+20832*x*y^6*z^3-6528*x*y^4*z^5+412*y^10-3348*y^8*z^2+1968*y^6*z^4+64*y^4*z^6-160*x^9+2684*x^8*z+5856*x^7*z^2+11888*x^6*y^2*z-6048*x^6*z^3+960*x^5*y^4-5856*x^5*y^2*z^2-7712*x^5*z^4+16488*x^4*y^4*z-28800*x^4*y^2*z^3+2112*x^4*z^5+1280*x^3*y^6-29280*x^3*y^4*z^2+15424*x^3*y^2*z^4+512*x^3*z^6+10096*x^2*y^6*z-11040*x^2*y^4*z^3+4224*x^2*y^2*z^5+480*x*y^8-17568*x*y^6*z^2+23136*x*y^4*z^4-1536*x*y^2*z^6+2812*y^8*z-7232*y^6*z^3+2112*y^4*z^5-750*x^8-1764*x^7*z-3000*x^6*y^2+8356*x^6*z^2+1764*x^5*y^2*z+9120*x^5*z^3-4500*x^4*y^4+28380*x^4*y^2*z^2-9552*x^4*z^4+8820*x^3*y^4*z-18240*x^3*y^2*z^3-3264*x^3*z^5-3000*x^2*y^6+22860*x^2*y^4*z^2-19104*x^2*y^2*z^4+1152*x^2*z^6+5292*x*y^6*z-27360*x*y^4*z^3+9792*x*y^2*z^5-750*y^8+8724*y^6*z^2-9552*y^4*z^4+1152*y^2*z^6+120*x^7-4376*x^6*z-120*x^5*y^2-4616*x^5*z^2-13416*x^4*y^2*z+14960*x^4*z^3-600*x^3*y^4+9232*x^3*y^2*z^2+5376*x^3*z^4-12936*x^2*y^4*z+29920*x^2*y^2*z^3-6912*x^2*z^5-360*x*y^6+13848*x*y^4*z^2-16128*x*y^2*z^4-4408*y^6*z+14960*y^4*z^3-6912*y^2*z^5+804*x^6+952*x^5*z+2412*x^4*y^2-10920*x^4*z^2-1904*x^3*y^2*z-3872*x^3*z^3+2412*x^2*y^4-21840*x^2*y^2*z^2+13824*x^2*z^4-2856*x*y^4*z+11616*x*y^2*z^3+804*y^6-10920*y^4*z^2+13824*y^2*z^4-1728*z^6-48*x^5+3804*x^4*z+96*x^3*y^2+1344*x^3*z^2+7608*x^2*y^2*z-13248*x^2*z^3+144*x*y^4-4032*x*y^2*z^2+3804*y^4*z-13248*y^2*z^3+5184*z^5-512*x^4-204*x^3*z-1024*x^2*y^2+6696*x^2*z^2+612*x*y^2*z-512*y^4+6696*y^2*z^2-6480*z^4+8*x^3-1728*x^2*z-24*x*y^2-1728*y^2*z+4320*z^3+180*x^2+180*y^2-1620*z^2+324*z-27=0
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-8-19 00:05:03 | 显示全部楼层
很郁闷啊,猛然发现以前计算的式子写错了,将(1)的条件写成了

1.设变量\(\alpha,\beta,\gamma\)满足\(0 \leqslant  \alpha \lt  \beta \lt  \gamma \lt  2\pi\) ,且

     \[x=\frac{\cos(\alpha)\sin(\frac{\gamma-\beta}{2})+\cos(\beta)\sin(\frac{\gamma-\alpha}{2})+\cos(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[y=\frac{\sin(\alpha)\sin(\frac{\gamma-\beta}{2})+\sin(\beta)\sin(\frac{\gamma-\alpha}{2})+\sin(\gamma)\sin(\frac{\beta-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

     \[z=\frac{2\sin(\frac{\beta-\alpha}{2})\sin(\frac{\beta-\alpha}{2})\sin(\frac{\gamma-\alpha}{2})}{\sin(\frac{\gamma-\beta}{2})+\sin(\frac{\gamma-\alpha}{2})+\sin(\frac{\beta-\alpha}{2})}\]

       猜测变量x,y,z之间存在不依赖变量\(\alpha,\beta,\gamma\)的等量关系式(可能是二次式)?

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-8-19 00:07:44 | 显示全部楼层
重新将(1)~(4)全部消元计算得到了甘志国想要的答案:

\[x^2+y^2+2z=1\]


将(1)~(4)代入上式很容易验证正确性,具体可见附件

三角函数式关系化简结果001.pdf (498.66 KB, 下载次数: 3)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-8-21 20:51:27 | 显示全部楼层
Mathematica code:
  1. {x==(Cos[\[Alpha]] Sin[(\[Gamma]-\[Beta])/2]+Cos[\[Beta]] Sin[(\[Gamma]-\[Alpha])/2]+Cos[\[Gamma]] Sin[(\[Beta]-\[Alpha])/2])/(Sin[(\[Gamma]-\[Beta])/2]+Sin[(\[Gamma]-\[Alpha])/2]+Sin[(\[Beta]-\[Alpha])/2]),y==(Sin[\[Alpha]] Sin[(\[Gamma]-\[Beta])/2]+Sin[\[Beta]] Sin[(\[Gamma]-\[Alpha])/2]+Sin[\[Gamma]] Sin[(\[Beta]-\[Alpha])/2])/(Sin[(\[Gamma]-\[Beta])/2]+Sin[(\[Gamma]-\[Alpha])/2]+Sin[(\[Beta]-\[Alpha])/2]),z==(2 Sin[(\[Beta]-\[Alpha])/2] Sin[(\[Gamma]-\[Beta])/2] Sin[(\[Gamma]-\[Alpha])/2])/(Sin[(\[Gamma]-\[Beta])/2]+Sin[(\[Gamma]-\[Alpha])/2]+Sin[(\[Beta]-\[Alpha])/2])}//TrigFactor
  2. %/.{\[Alpha]->4ArcTan[a1],\[Beta]->4ArcTan[a2],\[Gamma]->4ArcTan[a3]}//TrigExpand//Simplify
  3. GroebnerBasis[%,{x,y,z},{a1,a2,a3},MonomialOrder->EliminationOrder]//AbsoluteTiming
复制代码

点评

有兴趣,你看能否解决 http://bbs.emath.ac.cn/thread-5771-1-1.html 的问题?  发表于 2014-8-21 21:25

评分

参与人数 1金币 +8 贡献 +6 经验 +9 收起 理由
数学星空 + 8 + 6 + 9 很给力!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 04:51 , Processed in 0.029298 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表