找回密码
 欢迎注册
查看: 42456|回复: 19

[讨论] 一个1998年哈佛-麻省理工学院高中数学竞赛题

[复制链接]
发表于 2008-6-28 14:58:37 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
哈佛-麻省理工学院高中数学竞赛希望明年可以参加 $a^3+b^3+c^3 = x$ a,b,c,x都为正整数,找出最小的x,使得可以有两组(a,b,c). 其中题目中提供 $a^3+b^3 = x$ 最小的x为 $1729 = 12^3 + 1^3 = 10^3 + 9^3$ 使得有两组(a,b) 原题的卷子. Algebra卷子最后一题 http://web.mit.edu/hmmt/www/datafiles/problems/1998/ALGEBR98.pdf 1998年是唯一一年题目的解法丢失的一年 我可以很快的知道这个数字小于1730,但是后面的就不知道怎么做了. 我用计算机算出了结果,但是我在想有没有更简洁的那种可以很快做出来的方法. 早就想要发,但是每小时只能发三个帖子...只好多等30分钟不睡觉..凌晨 3AM了 orz.

评分

参与人数 1鲜花 +1 收起 理由
mathe + 1 感觉挺难的

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-6-28 15:05:06 | 显示全部楼层
等于最小的平方数能表示成三个立方数的和,且至少有两种表示方法 我想是否和同余有关系呢??? 比如两边求$mod 10$是否有帮助
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-6-28 15:08:34 | 显示全部楼层
哎呀错了,题目修改了一下, 不是$x^2$或者$x^3$而是x. 再来...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-6-28 15:23:20 | 显示全部楼层
呵呵 幸亏你修改的早 否则6个小时后就不能修改了 不过别灰心,俺三月的时候还和你一样呢 一个小时才能发3个 现在就冲到了前面
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-6-28 16:10:12 | 显示全部楼层
原帖由 无心人 于 2008-6-28 15:23 发表 呵呵 幸亏你修改的早 否则6个小时后就不能修改了 不过别灰心,俺三月的时候还和你一样呢 一个小时才能发3个 现在就冲到了前面
是是... 我现在是天使保护组...这样可以没有限制... 等天使保护组过期了...我也应该可以每小时6贴了... 原来那个题目我当时的做法只能是暴力... 因为数字一定小于1730,则总共只能有12个立方. 而12立方明显太大,消掉,还有11个可能 1,8,27,64,125,216,343,512,729,1000,1331 如果说是mod 10 1,8,7,4,5,6,3,2,9,0,1 其中3个+起来=相同数字的实在不少...9+0+1 = 0, 8+1+1 = 0, 8+0+2 = 0... 等等... 似乎还是太多了...当场用肯定时间不够...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-6-28 16:16:12 | 显示全部楼层
两两之差倒只有55组。 要求这55组里面找到3个数,使得其中一个可以表示成另外两个之和。 这个计算量倒不算太大,但是太难看了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-6-29 15:03:08 | 显示全部楼层
答案是什么? 是:$251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3$ 或:$1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3$ 还是其它更符合要求的? 能用三种不同方法表示成两个正整数的立方和的最小正整数是:   $87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 +414^3$ 能用两种不同方法表示成两个正整数的四次方和的最小正整数是:   $635318657 = 59^4 + 158^4 = 133^4 + 134^4$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-6-29 15:27:36 | 显示全部楼层
那一年的答案丢失. 按照题目来看,251就是结果. 不用电脑算...似乎不容易.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-6-29 16:00:14 | 显示全部楼层
没想到还有这么小的结果 我还以为1730就是最小的结果。 一开始考虑方向就错误了 看来手工计算主要问题在于如何构造这个最小结果。构造了251以后,证明最小应该是很简单的。 而251这个数并不大,如果直接从小的数开始试验,也许几步就试验出来了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-6-29 16:18:17 | 显示全部楼层
可以这么考虑: 如图,表格中分别为$n^3-m^3$
182764125216
172663124215
81956117208
273798189
6461152
12591
216
选择最后一列最后一个数,分别同前面的数相减: 215-124=91,91虽然出现,但是和215同在最后一列,不是我们所要得(因为最优结果只有一边使用了最大的数字) 215-117=98 符合要求=>$ 6^3-1^3=5^3-2^3+5^3-3^3=>6^3+2^3+3^3=5^3+5^3+1^3$

评分

参与人数 1金币 +1 收起 理由
无心人 + 1 鼓励下,哈哈

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 20:59 , Processed in 0.025868 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表