找回密码
 欢迎注册
查看: 25352|回复: 4

[原创] 证明两个数论

[复制链接]
发表于 2015-1-21 17:24:19 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
a,b,c,d都是正整数,如果a/b-b/c-c/a=3,那么a*b*c是立方数。(这个是我在什么地方看到的)
如果a/b/+c/d=b/c+d/a ,那么a*b*c*d是四次方数。(这个是我发现的)

此问题有没有普遍结论?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-1-25 18:59:42 来自手机 | 显示全部楼层
第一问经过计算可以转化为退化的椭圆曲线方程$y^2=(x-2)(x+1)^2$。于是可以求出通解(同构于$Q^2$的乘法子群)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-1-25 19:52:24 | 显示全部楼层
设$y={8ac-4b^2-12bc}/{b^2},x=4(c/b+1)$,可以得到$y^2=x^2(x-3)$
同样给定有理点(x,y)可以容易算出$c/b$然后代入y表达式求出$a/b$
取$t=p+q\sqrt{-3}$,其中p,q为任意有理数而且$p^2+3q^2=1$,那么$x={-12t}/{(t-1)^2},y={-12\sqrt{-3}t(t+1)}/{(t-1)^3}$给出了通解
得出$c/b={x-4}/4,a/b={y+3x-8}/{2(x-4)}$
然后计算可以知道$x=({p+1}/q)^2+3,y={(p+1)x}/q$,于是得到$y+3x-8=({p+1}/q+1)^3$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-1-26 19:55:04 来自手机 | 显示全部楼层
$25/6+9/90=6/9+90/25 $; $25*6*9*90=2^2*3^5*5^3$

点评

如果加上a,b,c,d互质行不行?  发表于 2015-1-27 11:09
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 04:42 , Processed in 0.039705 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表