找回密码
 欢迎注册
楼主: 无心人

[讨论] 能通过2,3,5,7的检验的合数

[复制链接]
 楼主| 发表于 2008-10-11 20:32:41 | 显示全部楼层
上面贴的论文有如何计算伪素数的算法 用1.2G CPU计算到10^15花费8.6天 我想如果精心编码加更快的CPU 有希望在60天内计算出10^16的结果 呵呵
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-10-11 20:51:43 | 显示全部楼层
现在,顺带求一下下面的问题: 分别求出第一次误判的数大于10^8,10^9,10^10,10^11,10^12,10^13,10^14,10^15 的测试基数目最少的测试基组合.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-10-11 20:58:14 | 显示全部楼层
刚去测试你提供的基的 (2, 3, 102199) 通过5262 (2, 3, 696811) 通过5398 都是很多的 所以目前我想并没有很快捷的方法来筛选基组合
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-10-11 21:00:26 | 显示全部楼层
10^13应该能找到4元基组合的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-10-11 21:06:02 | 显示全部楼层
被你杀掉的基首数字就不错 (2,3,7,61,24251) 669094855201
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-10-11 21:09:01 | 显示全部楼层
*Primes> let t8 = filter (<100000000) t23 *Primes> t8 [1373653,1530787,1987021,2284453,3116107,5173601,6787327,11541307,13694761,15978 007,16070429,16879501,25326001,27509653,27664033,28527049,54029741,61832377,6609 6253,74927161,80375707] *Primes> length t8 21 10^8内仅21组通过2,3的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-10-11 21:09:52 | 显示全部楼层
原帖由 无心人 于 2008-10-11 20:58 发表 刚去测试你提供的基的 (2, 3, 102199) 通过5262 (2, 3, 696811) 通过5398 都是很多的 所以目前我想并没有很快捷的方法来筛选基组合
我现在觉得,小素数的筛选功能更强一些,这个可能也是(2, 3, 102199) 和(2, 3, 696811) 误判数较多,以及(2,3,5),(2,3,13),(2,3,61)误判数较少的原因。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-10-11 21:13:55 | 显示全部楼层
10^8的得到了 (2, 3, 23)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-10-11 21:16:47 | 显示全部楼层
原帖由 无心人 于 2008-10-11 21:06 发表 被你杀掉的基首数字就不错 (2,3,7,61,24251) 66,90948,55201
呵呵,这个(2,3,7,61,24251)还是一般般.实质上我在17#就找到了一个比它好的了: (2,3,5,7,3439829)第一次误判发生在9905,03702,60227.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-10-11 21:18:51 | 显示全部楼层
原帖由 无心人 于 2008-10-11 20:21 发表 http://oldweb.cecm.sfu.ca/pseudoprime/psp-search-slides.pdf 541
这个论文好像还没有用到我142#的结论。所以应该还可以改善
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 11:11 , Processed in 0.028000 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表