找回密码
 欢迎注册
查看: 39241|回复: 3

[原创] 特殊的共心三角形

[复制链接]
发表于 2015-8-14 20:30:49 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
如下图,若三角形\(\triangle DEF\)在锐角\(\triangle ABC\)内部,且\(AD=BE=CF= r\),\(D,E, F\)分别在线段\(AF,BD,CE\)上,设\(\triangle ABC\)各边长依次为\(a,b,c\)

2015081401.png

1)若存在点\(P\)是\(\triangle ABC\)和\(\triangle DEF\)的外心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

2)若存在点\(P\)既是\(\triangle ABC\)的外心,又是\(\triangle DEF\)的内心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

3)若存在点\(P\)既是\(\triangle ABC\)的外心,又是\(\triangle DEF\)的垂心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

4)若存在点\(P\)既是\(\triangle ABC\)的外心,又是\(\triangle DEF\)的重心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?


5)若存在点\(P\)是\(\triangle ABC\)和\(\triangle DEF\)的内心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

6)若存在点\(P\)既是\(\triangle ABC\)的内心,又是\(\triangle DEF\)的外心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

7)若存在点\(P\)既是\(\triangle ABC\)的内心,又是\(\triangle DEF\)的垂心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

8)若存在点\(P\)既是\(\triangle ABC\)的内心,又是\(\triangle DEF\)的重心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?


9)若存在点\(P\)是\(\triangle ABC\)和\(\triangle DEF\)的垂心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

10)若存在点\(P\)既是\(\triangle ABC\)的垂心,又是\(\triangle DEF\)的外心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

11)若存在点\(P\)既是\(\triangle ABC\)的垂心,又是\(\triangle DEF\)的内心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

12)若存在点\(P\)既是\(\triangle ABC\)的垂心,又是\(\triangle DEF\)的重心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?



13)若存在点\(P\)是\(\triangle ABC\)和\(\triangle DEF\)的重心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

14)若存在点\(P\)既是\(\triangle ABC\)的重心,又是\(\triangle DEF\)的外心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

15)若存在点\(P\)既是\(\triangle ABC\)的重心,又是\(\triangle DEF\)的内心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

16)若存在点\(P\)既是\(\triangle ABC\)的重心,又是\(\triangle DEF\)的垂心,求\(r\)值? 并给出\(\triangle DEF\)的各边长\(m,n,p\)?

若点\(P\)在一般条件不存在,请给出存在的条件?

注: \(EF=m,DF=n,DE=p\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-8-15 18:56:05 | 显示全部楼层
问题1),不存在这样的点P

点评

我也怀疑,但没有找到合理的依据?  发表于 2015-8-15 19:10
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-8-15 20:32:44 | 显示全部楼层
以第一问为例:用重心坐标
\[\left\{ \begin{array}{l}
A  =  \frac{r}{m}E + \left( {1 - \frac{r}{m}} \right)D \\
B = \frac{r}{n}F + \left( {1 - \frac{r}{n}} \right)E \\
C = \frac{r}{p}D + \left( {1 - \frac{r}{p}} \right)F \\
\end{array} \right.\]
由距离公式得
\[\left\{ \begin{array}{l}
{c^2} = \frac{{{r^3}}}{m} + {r^2} - mr + \left( {1 - \frac{r}{m}} \right)\left\{ {\frac{r}{n}{p^2} + \left( {1 - \frac{r}{n}} \right){m^2} - nr + {r^2}} \right\} \\
{a^2} = \frac{{{r^3}}}{n} + {r^2} - nr + \left( {1 - \frac{r}{n}} \right)\left\{ {\frac{r}{p}{m^2} + \left( {1 - \frac{r}{p}} \right){n^2} - pr + {r^2}} \right\} \\
{b^2} = \frac{{{r^3}}}{p} + {r^2} - pr + \left( {1 - \frac{r}{p}} \right)\left\{ {\frac{r}{m}{n^2} + \left( {1 - \frac{r}{m}} \right){p^2} - mr + {r^2}} \right\} \\
\end{array} \right.\]
再由外心坐标公式:
\[P = \frac{{{a^2}\left( {{b^2} + {c^2} - {a^2}} \right)A + {b^2}\left( {{c^2} + {a^2} - {b^2}} \right)B + {c^2}\left( {{a^2} + {b^2} - {c^2}} \right)C}}{{2{a^2}{b^2} + 2{b^2}{c^2} + 2{c^2}{a^2} - {a^4} - {b^4} - {c^4}}}\]
\[P = \frac{{{n^2}\left( {{p^2} + {m^2} - {n^2}} \right)D + {p^2}\left( {{m^2} + {n^2} - {p^2}} \right)E + {m^2}\left( {{n^2} + {p^2} - {m^2}} \right)F}}{{2{m^2}{n^2} + 2{n^2}{p^2} + 2{p^2}{m^2} - {m^4} - {m^4} - {p^4}}}\]
代入比较可得如下两式:
\[\left\{ \begin{array}{l}
\frac{{{a^2}p\left( {m - r} \right)\left( {{b^2} + {c^2} - {a^2}} \right) + {c^2}mr\left( {{a^2} + {b^2} - {c^2}} \right)}}{{(2{a^2}{b^2} + 2{b^2}{c^2} + 2{a^2}{c^2} - {a^4} - {b^4} - {c^4})mp}} = \frac{{{n^2}\left( {{p^2} + {m^2} - {n^2}} \right)}}{{2{m^2}{n^2} + 2{n^2}{p^2} + 2{p^2}{m^2} - {m^4} - {m^4} - {p^4}}} \\
\frac{{{c^2}n\left( {p - r} \right)\left( {{a^2} + {b^2} - {c^2}} \right) + {b^2}pr\left( {{a^2} + {c^2} - {b^2}} \right)}}{{(2{a^2}{b^2} + 2{b^2}{c^2} + 2{a^2}{c^2} - {a^4} - {b^4} - {c^4})np}}   = \frac{{{m^2}\left( {{n^2} + {p^2} - {m^2}} \right)}}{{2{m^2}{n^2} + 2{n^2}{p^2} + 2{p^2}{m^2} - {m^4} - {m^4} - {p^4}}} \\
\end{array} \right.\]
以上五式共同决定未知数m,n,p,r
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 04:58 , Processed in 0.023540 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表