- 注册时间
- 2015-10-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3356
- 在线时间
- 小时
|
楼主 |
发表于 2015-12-15 13:23:15
|
显示全部楼层
原来1876年就有人提过了
http://math.fau.edu/richman/Interesting/WebSite/Number71.pdf
Brocard’s problem (1876) is to find numbers m such that m! + 1 is a square. Only
three such numbers m are known, 4, 5, and 7. For the largest of these, the square is
712 = 7! + 1. So 71 is the largest number known whose square is a factorial plus one. A
search by Berndt and Galway in 2000 showed that there are no further numbers m with
fewer than nine digits. Thus any number greater than 71 whose square is a factorial plus
one must have over 90;000 digits. |
|