- 注册时间
- 2013-6-29
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 1886
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
设 \(f(x)\) 是 \([0,1]\) 上有定义的连续函数,且 \(0\leqslant f(x)\leqslant 1\). 若 \(\xi_1,\eta_1,\xi_2,\eta_2,\dots\) 是一列服从 \([0,1]\) 上均匀分布的相互独立的随机变量序列,令 \[\rho_i=\begin{cases}1, &f(\xi_i)\geqslant\eta_i,\\0, &f(\xi_i)\lt\eta_i\end{cases}(i\geqslant1),\]
试证明:当 \(n\to\infty\) 时,\[\frac1n\sum_{i=1}^{n}{\rho_i}\ce{->[a.s.]}\int_0^1f(x)\dif x .\] |
|