方程\[x^3+y^3+z^3\equiv0\pmod{xyz}, \\\gcd(x,y,z)=1,xyz>0\]有 4 个平凡解(±1,±1,±1), 两种部分解, 一是 `x+y+z=0` 者,二是`\{1, -1, z\}`。
在`1\le|x|<|y|<|z|\le100`范围内,除上述三者外,还有以下特解
{ 1, 2, 3}, { 1, 2, 9}, { 1, 3, 14}, { 1, 5, 9}, { 1, 5, 14},
{ 1, 14, 45}, { 1, 14, 61}, { 1, 35, 54}, { 2, 3, 7}, { 2, 7, 13},
{ 2, 7, 27}, { 2, 9, 67}, { 2, 13, 21}, { 2, 13, 63}, { 2, 21, 31},
{ 2, 27, 97}, { 2, 31, 43}, { 2, 43, 57}, { 2, 57, 73}, { 2, 73, 91},
{ 3, 7, 74}, { 5, 7, 18}, { 5, 7, 78}, { 5, 9, 61}, { 5, 18, 37},
{ 9, 13, 38}, { 9, 13, 77}, { 9, 38, 91}, { 13, 42, 95}, { -1, -2, 9},
{-1, -3, 7}, {-1, -3, 28}, { -1, -4, 13}, { -1, -4, 65}, { -1, -5, 21},
{-1, -6, 31}, {-1, -7, 43}, { -1, -7, 86}, { -1, -8, 57}, { -1, -9, 73},
{-1, -10, 91}, {-1, -19, 49}, { -1, -26, 81}, { -1, -27, 37}, { -1, -31, 56},
{-1, -31, 98}, {-1, -36, 97}, { -2, -3, 35}, { -2, -7, 39}, { -2, -13, 45},
{-3, -4, 91}, {-3, -5, 38}, { -4, -9, 61}, { -5, -7, 52}, { -7, -8, 95},
{-7, -9, 67}, {-9, -31, 70}, {-13, -14, 61}, {-14, -19, 97}, {-19, -21, 52}
{-1, 2, -7}, {-1, 3, -26}, { -1, 4, -7}, { -1, 4, -63}, { -1, 7, -19},
{-1, 7, -38}, {-1, 9, -14}, { -1, 9, -26}, { -1, 9, -56}, { -1, 13, -36},
{-1, 16, -63}, {-1, 19, -27}, { -1, 26, -95}, { -2, 3, -19}, { -2, 5, -13},
{-3, 4, -37}, {-3, 7, -79}, { -4, 5, -61}, { -4, 7, -31}, { -5, 6, -91},
{-5, 8, -43}, {-6, 19, -91}, { -7, 10, -73}, { -7, 37, -78}, { -8, 11, -91}
{ 1, -2, -7}, { 1, -3, -13}, { 1, - 4, -9}, { 1, -4, -21}, { 1, -5, -31},
{ 1, -6, -43}, { 1, -7, -9}, { 1, -7, -18}, { 1, -7, -57}, { 1, -8, -73},
{ 1, -9, -13}, { 1, -9, -28}, { 1, -9, -52}, { 1, -9, -91}, { 1, -13, -61},
{ 1, -16, -65}, { 1, -18, -49}, { 1, -28, -81}, { 1, -37, -63}, { 1, -37, -84},
{ 1, -45, -76}, { 2, -7, -67}, { 3, -13, -14}, { 3, -13, -35}, { 3, -14, -19},
{ 4, -7, -9}, { 4, -7, -93}, { 4, -9, -19}, { 5, -62, -63}, { 7, -39, -76},
{ 8, -63, -65}, { 9, -49, -74} |