找回密码
 欢迎注册
查看: 18668|回复: 3

[分享] 2007/8 British Mathematical Olympiad

[复制链接]
发表于 2008-1-25 11:25:07 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
Round 1: Friday, 30 November 2007 -------------------------------------------------------------------------------- 1) Find the value of (1^4+2007^4+2008^4)/(1^2+2007^2+2008^2) 2) Find all solutions in positive integers x,y,z to the simultaneous equations. x+y-z=12 x^2+y^2-z^2=12 3) Let ABC be a triangle with an obtuse angle at A. Let Q be a point (other than A,B, or C) on the circumcircle of the triangle, on the same side chord BC as A, and let P be the other end of the diameter through Q. Let V and W be the feet of the perpendiculars from Q onto CA and AB respectively. Prove that the triangle PBC and AWV are similar. (Note: the circumcircle of the triangle ABC is the circle which passes through the vertices A,B and C.) 4) Let S be a subset of the set of numbers {1,2,3,...,2008} which consists of 756 distinct numbers. Show that there are two distinct elements a,b of S such that a+b is divisible by 8. 5)Let P be an internal point of the triangle ABC. The line through P parallel to AB meets BC at L, the line through P parallel to BC meets CA at M, and the line through P parallel to CA meets AB at N. Prove that BL/LC X CM/MA X AN/NB (is equal or smaller than) 1/8 and locate the position of P in the triangle ABC when equality holds. 6) The function f is defined on the set of positive integers by f(1)=1, f(2n)=2f(n) and nf(2n+1)=(2n+1)(f(n)+n) for all values where n is equal or bigger than 1. (i) Prove that f(n) is always an integer. (ii) For how many positive integers less than 2007 is f(n)=2n
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-25 15:25:49 | 显示全部楼层
最后一道题目这么简单呀 假设 f(n)=n*g(n) 得到 g(1)=1,g(2n)=g(n),g(2n+1)=g(n)+1=g(2n)+1 得到,g(n)是n二进制表示中1的数目。 现在问有多少个小于2007的整数中二进制表示正好两位是1, 2007二进制表示为11111010111,后面就不用算了,太简单了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-27 12:29:13 | 显示全部楼层
我来做个最简单的,余下的楼下继续 令 a=2007,则 原式 = [ 14 + a4 + ( 1 + a )4 ] / [ 12 + a2 + ( 1 + a )2 ]    = 1 + a + a2 = 4030057
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-1-28 22:47:34 | 显示全部楼层
我也来做一个,好久不做奥数题了,不足指出请指出 2) 已知x,y,z都是正整数, z=x+y-12 而x^2+y^2-z^2=12 则x^2+y^2-(x+y-12)^2=12 所以xy-12x-12y+78=0 (x-12)(y-12)=66=1*66=(-1)*(-66)=6*11=(-6)*(-11)=2*33=(-2)*(-33)=3*22=(-3)*(-22) 方程中x,y等价: i) x-12=1, y-12=66, 此时x=13,y=78,z=13+78-12=79 ii) x-12=-1,y-12=-66,此时y=-54<0,不符合要求,舍去 iii)x-12=6, y-12=11, 此时x=18,y=23,z=18+23-12=29 iv) x-12=-6,y-12=-11 此时x=6, y=1 ,z=6+1-12=-5<0,不符合要求,舍去 v) x-12=2, y-12=33, 此时x=14,y=45,z=14+45-12=47 vi) x-12=3, y-12=22, 此时x=15,y=34,z=15+34-12=37 vii)另外2种情况下,不符合要求,舍去 综上所述,有8组解,(x,y,z)为(13,78,79),(78,13,79),(18,23,29),(23,18,29), (14,45,47),(45,14,47),(15,34,37),(34,15,37)

评分

参与人数 1鲜花 +1 收起 理由
gxqcn + 1 巧妙的代换

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 09:51 , Processed in 0.027954 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表