数学研发论坛

 找回密码
 欢迎注册
查看: 869|回复: 8

[讨论] 数学界的 e与pi 问题

[复制链接]
发表于 2017-8-20 13:34:52 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
e与pi的小数展式:
从第10个数字起,
每隔10个数字,
必有一数字重合。


补充说明:
我再看准书上是这样说的:平均每隔10位数,
唉,平均 一词,模棱两可,,—— 不确切!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-8-20 14:52:51 | 显示全部楼层
{{{1,10},False},{{11,20},True},{{21,30},False},{{31,40},True},{{41,50},True},{{51,60},True},{{61,70},True},{{71,80},True},{{81,90},False},{{91,100},True},{{101,110},False},{{111,120},False},{{121,130},False},{{131,140},False},{{141,150},True},{{151,160},False},{{161,170},True},{{171,180},False},{{181,190},False},{{191,200},False},{{201,210},True},{{211,220},False},{{221,230},False},{{231,240},False},{{241,250},True},{{251,260},False},{{261,270},True},{{271,280},True},{{281,290},False},{{291,300},True},{{301,310},False},{{311,320},False},{{321,330},True},{{331,340},True},{{341,350},False},{{351,360},True},{{361,370},True},{{371,380},False},{{381,390},True},{{391,400},True},{{401,410},False},{{411,420},True},{{421,430},True},{{431,440},False},{{441,450},False},{{451,460},True},{{461,470},True},{{471,480},False},{{481,490},True},{{491,500},True},{{501,510},True},{{511,520},True},{{521,530},True},{{531,540},False},{{541,550},True},{{551,560},False},{{561,570},False},{{571,580},False},{{581,590},True},{{591,600},True},{{601,610},True},{{611,620},True},{{621,630},True},{{631,640},True},{{641,650},True},{{651,660},False},{{661,670},False},{{671,680},False},{{681,690},False},{{691,700},True},{{701,710},False},{{711,720},False},{{721,730},True},{{731,740},True},{{741,750},True},{{751,760},False},{{761,770},False},{{771,780},True},{{781,790},False},{{791,800},False},{{801,810},False},{{811,820},False},{{821,830},True},{{831,840},True},{{841,850},False},{{851,860},False},{{861,870},True},{{871,880},True},{{881,890},False},{{891,900},True},{{901,910},True},{{911,920},True},{{921,930},True},{{931,940},True},{{941,950},True},{{951,960},True},{{961,970},True},{{971,980},True},{{981,990},True},{{991,1000},False},{{1001,1010},True},{{1011,1020},False},{{1021,1030},True},{{1031,1040},True},{{1041,1050},False},{{1051,1060},True},{{1061,1070},False},{{1071,1080},True},{{1081,1090},False},{{1091,1100},False},{{1101,1110},False},{{1111,1120},False},{{1121,1130},False},{{1131,1140},True},{{1141,1150},True},{{1151,1160},True},{{1161,1170},False},{{1171,1180},True},{{1181,1190},False},{{1191,1200},True},{{1201,1210},True},{{1211,1220},False},{{1221,1230},True},{{1231,1240},False},{{1241,1250},False},{{1251,1260},True},{{1261,1270},True},{{1271,1280},True},{{1281,1290},True},{{1291,1300},True},{{1301,1310},True},{{1311,1320},False},{{1321,1330},True},{{1331,1340},True},{{1341,1350},True},{{1351,1360},True},{{1361,1370},True},{{1371,1380},True},{{1381,1390},True},{{1391,1400},True},{{1401,1410},True},{{1411,1420},True},{{1421,1430},True},{{1431,1440},False},{{1441,1450},False},{{1451,1460},True},{{1461,1470},True},{{1471,1480},True},{{1481,1490},True},{{1491,1500},False},{{1501,1510},False},{{1511,1520},False},{{1521,1530},False},{{1531,1540},False},{{1541,1550},False},{{1551,1560},False},{{1561,1570},True},{{1571,1580},True},{{1581,1590},True},{{1591,1600},True},{{1601,1610},True},{{1611,1620},False},{{1621,1630},False},{{1631,1640},True},{{1641,1650},False},{{1651,1660},True},{{1661,1670},True},{{1671,1680},False},{{1681,1690},False},{{1691,1700},True},{{1701,1710},True},{{1711,1720},False},{{1721,1730},True},{{1731,1740},False},{{1741,1750},True},{{1751,1760},True},{{1761,1770},False},{{1771,1780},True},{{1781,1790},True},{{1791,1800},True},{{1801,1810},True},{{1811,1820},True},{{1821,1830},True},{{1831,1840},True},{{1841,1850},True},{{1851,1860},True},{{1861,1870},True},{{1871,1880},True},{{1881,1890},True},{{1891,1900},True},{{1901,1910},True},{{1911,1920},False},{{1921,1930},True},{{1931,1940},True},{{1941,1950},True},{{1951,1960},False},{{1961,1970},False},{{1971,1980},True},{{1981,1990},False},{{1991,2000},True},{{2001,2010},False},{{2011,2020},True},{{2021,2030},False},{{2031,2040},False},{{2041,2050},False},{{2051,2060},True},{{2061,2070},True},{{2071,2080},False},{{2081,2090},True},{{2091,2100},False},{{2101,2110},False},{{2111,2120},True},{{2121,2130},True},{{2131,2140},False},{{2141,2150},True},{{2151,2160},True},{{2161,2170},False},{{2171,2180},True},{{2181,2190},True},{{2191,2200},True},{{2201,2210},False},{{2211,2220},True},{{2221,2230},True},{{2231,2240},False},{{2241,2250},False},{{2251,2260},True},{{2261,2270},True},{{2271,2280},False},{{2281,2290},False},{{2291,2300},True},{{2301,2310},True},{{2311,2320},False},{{2321,2330},True},{{2331,2340},False},{{2341,2350},True},{{2351,2360},True},{{2361,2370},True},{{2371,2380},True},{{2381,2390},True},{{2391,2400},True},{{2401,2410},True},{{2411,2420},True},{{2421,2430},True},{{2431,2440},True},{{2441,2450},False},{{2451,2460},True},{{2461,2470},False},{{2471,2480},False},{{2481,2490},True},{{2491,2500},True},{{2501,2510},True},{{2511,2520},True},{{2521,2530},True},{{2531,2540},False},{{2541,2550},True},{{2551,2560},True},{{2561,2570},True},{{2571,2580},False},{{2581,2590},True},{{2591,2600},True},{{2601,2610},True},{{2611,2620},False},{{2621,2630},True},{{2631,2640},True},{{2641,2650},True},{{2651,2660},True},{{2661,2670},True},{{2671,2680},True},{{2681,2690},True},{{2691,2700},True},{{2701,2710},True},{{2711,2720},True},{{2721,2730},True},{{2731,2740},True},{{2741,2750},True},{{2751,2760},True},{{2761,2770},False},{{2771,2780},False},{{2781,2790},True},{{2791,2800},True},{{2801,2810},False},{{2811,2820},False},{{2821,2830},False},{{2831,2840},True},{{2841,2850},False},{{2851,2860},True},{{2861,2870},True},{{2871,2880},False},{{2881,2890},True},{{2891,2900},True},{{2901,2910},True},{{2911,2920},True},{{2921,2930},True},{{2931,2940},False},{{2941,2950},True},{{2951,2960},False},{{2961,2970},True},{{2971,2980},False},{{2981,2990},True},{{2991,3000},True},{{3001,3010},True},{{3011,3020},False},{{3021,3030},True},{{3031,3040},True},{{3041,3050},False},{{3051,3060},True},{{3061,3070},True},{{3071,3080},True},{{3081,3090},False},{{3091,3100},False},{{3101,3110},False},{{3111,3120},False},{{3121,3130},True},{{3131,3140},True},{{3141,3150},False},{{3151,3160},True},{{3161,3170},False},{{3171,3180},False},{{3181,3190},True},{{3191,3200},False},{{3201,3210},True},{{3211,3220},False},{{3221,3230},True},{{3231,3240},True},{{3241,3250},False},{{3251,3260},False},{{3261,3270},True},{{3271,3280},True},{{3281,3290},False},{{3291,3300},False},{{3301,3310},True},{{3311,3320},True},{{3321,3330},False},{{3331,3340},True},{{3341,3350},True},{{3351,3360},True},{{3361,3370},False},{{3371,3380},True},{{3381,3390},False},{{3391,3400},True},{{3401,3410},False},{{3411,3420},True},{{3421,3430},True},{{3431,3440},False},{{3441,3450},False},{{3451,3460},False},{{3461,3470},True},{{3471,3480},True},{{3481,3490},True},{{3491,3500},True},{{3501,3510},True},{{3511,3520},True},{{3521,3530},True},{{3531,3540},False},{{3541,3550},True},{{3551,3560},True},{{3561,3570},True},{{3571,3580},False},{{3581,3590},False},{{3591,3600},True},{{3601,3610},True},{{3611,3620},True},{{3621,3630},True},{{3631,3640},True},{{3641,3650},False},{{3651,3660},True},{{3661,3670},True},{{3671,3680},False},{{3681,3690},False},{{3691,3700},True},{{3701,3710},True},{{3711,3720},False},{{3721,3730},True},{{3731,3740},False},{{3741,3750},True},{{3751,3760},False},{{3761,3770},False},{{3771,3780},False},{{3781,3790},True},{{3791,3800},True},{{3801,3810},False},{{3811,3820},False},{{3821,3830},True},{{3831,3840},True},{{3841,3850},True},{{3851,3860},True},{{3861,3870},True},{{3871,3880},False},{{3881,3890},False},{{3891,3900},True},{{3901,3910},True},{{3911,3920},True},{{3921,3930},True},{{3931,3940},False},{{3941,3950},False},{{3951,3960},True},{{3961,3970},False},{{3971,3980},True},{{3981,3990},False},{{3991,4000},True},{{4001,4010},True},{{4011,4020},True},{{4021,4030},False},{{4031,4040},False},{{4041,4050},True},{{4051,4060},True},{{4061,4070},False},{{4071,4080},True},{{4081,4090},True},{{4091,4100},True},{{4101,4110},True},{{4111,4120},True},{{4121,4130},False},{{4131,4140},True},{{4141,4150},False},{{4151,4160},True},{{4161,4170},True},{{4171,4180},True},{{4181,4190},False},{{4191,4200},False},{{4201,4210},True},{{4211,4220},False},{{4221,4230},True},{{4231,4240},True},{{4241,4250},True},{{4251,4260},True},{{4261,4270},True},{{4271,4280},True},{{4281,4290},True},{{4291,4300},True},{{4301,4310},True},{{4311,4320},True},{{4321,4330},True},{{4331,4340},True},{{4341,4350},False},{{4351,4360},False},{{4361,4370},True},{{4371,4380},True},{{4381,4390},True},{{4391,4400},False},{{4401,4410},False},{{4411,4420},False},{{4421,4430},True},{{4431,4440},False},{{4441,4450},False},{{4451,4460},True},{{4461,4470},True},{{4471,4480},False},{{4481,4490},True},{{4491,4500},True},{{4501,4510},False},{{4511,4520},True},{{4521,4530},True},{{4531,4540},False},{{4541,4550},True},{{4551,4560},True},{{4561,4570},True},{{4571,4580},False},{{4581,4590},False},{{4591,4600},True},{{4601,4610},True},{{4611,4620},False},{{4621,4630},True},{{4631,4640},True},{{4641,4650},False},{{4651,4660},True},{{4661,4670},True},{{4671,4680},False},{{4681,4690},True},{{4691,4700},True},{{4701,4710},True},{{4711,4720},True},{{4721,4730},True},{{4731,4740},True},{{4741,4750},True},{{4751,4760},True},{{4761,4770},True},{{4771,4780},False},{{4781,4790},True},{{4791,4800},False},{{4801,4810},False},{{4811,4820},True},{{4821,4830},True},{{4831,4840},True},{{4841,4850},True},{{4851,4860},True},{{4861,4870},True},{{4871,4880},True},{{4881,4890},True},{{4891,4900},True},{{4901,4910},False},{{4911,4920},False},{{4921,4930},True},{{4931,4940},True},{{4941,4950},True},{{4951,4960},False},{{4961,4970},False},{{4971,4980},False},{{4981,4990},True},{{4991,5000},True},{{5001,5010},True},{{5011,5020},True},{{5021,5030},False},{{5031,5040},True},{{5041,5050},True},{{5051,5060},False},{{5061,5070},True},{{5071,5080},False},{{5081,5090},True},{{5091,5100},True},{{5101,5110},False},{{5111,5120},False},{{5121,5130},True},{{5131,5140},True},{{5141,5150},True},{{5151,5160},True},{{5161,5170},True},{{5171,5180},False},{{5181,5190},False},{{5191,5200},False},{{5201,5210},False},{{5211,5220},False},{{5221,5230},False},{{5231,5240},True},{{5241,5250},False},{{5251,5260},False},{{5261,5270},True},{{5271,5280},False},{{5281,5290},True},{{5291,5300},True},{{5301,5310},False},{{5311,5320},True},{{5321,5330},True},{{5331,5340},True},{{5341,5350},False},{{5351,5360},True},{{5361,5370},True},{{5371,5380},True},{{5381,5390},False},{{5391,5400},True},{{5401,5410},True},{{5411,5420},True},{{5421,5430},True},{{5431,5440},False},{{5441,5450},True},{{5451,5460},False},{{5461,5470},False},{{5471,5480},True},{{5481,5490},True},{{5491,5500},False},{{5501,5510},True},{{5511,5520},False},{{5521,5530},True},{{5531,5540},True},{{5541,5550},True},{{5551,5560},False},{{5561,5570},True},{{5571,5580},True},{{5581,5590},False},{{5591,5600},True},{{5601,5610},True},{{5611,5620},False},{{5621,5630},False},{{5631,5640},False},{{5641,5650},False},{{5651,5660},True},{{5661,5670},True},{{5671,5680},False},{{5681,5690},True},{{5691,5700},True},{{5701,5710},True},{{5711,5720},True},{{5721,5730},True},{{5731,5740},True},{{5741,5750},True},{{5751,5760},True},{{5761,5770},False},{{5771,5780},True},{{5781,5790},True},{{5791,5800},True},{{5801,5810},False},{{5811,5820},True},{{5821,5830},True},{{5831,5840},True},{{5841,5850},True},{{5851,5860},False},{{5861,5870},True},{{5871,5880},True},{{5881,5890},True},{{5891,5900},True},{{5901,5910},True},{{5911,5920},True},{{5921,5930},True},{{5931,5940},False},{{5941,5950},True},{{5951,5960},False},{{5961,5970},True},{{5971,5980},False},{{5981,5990},True},{{5991,6000},True},{{6001,6010},False},{{6011,6020},False},{{6021,6030},True},{{6031,6040},False},{{6041,6050},True},{{6051,6060},True},{{6061,6070},True},{{6071,6080},True},{{6081,6090},True},{{6091,6100},True},{{6101,6110},True},{{6111,6120},True},{{6121,6130},True},{{6131,6140},False},{{6141,6150},False},{{6151,6160},True},{{6161,6170},True},{{6171,6180},True},{{6181,6190},False},{{6191,6200},False},{{6201,6210},True},{{6211,6220},False},{{6221,6230},False},{{6231,6240},False},{{6241,6250},False},{{6251,6260},False},{{6261,6270},True},{{6271,6280},True},{{6281,6290},True},{{6291,6300},True},{{6301,6310},False},{{6311,6320},True},{{6321,6330},False},{{6331,6340},True},{{6341,6350},True},{{6351,6360},True},{{6361,6370},True},{{6371,6380},False},{{6381,6390},False},{{6391,6400},True},{{6401,6410},False},{{6411,6420},False},{{6421,6430},True},{{6431,6440},True},{{6441,6450},True},{{6451,6460},False},{{6461,6470},True},{{6471,6480},True},{{6481,6490},True},{{6491,6500},False},{{6501,6510},False},{{6511,6520},True},{{6521,6530},False},{{6531,6540},False},{{6541,6550},False},{{6551,6560},True},{{6561,6570},False},{{6571,6580},True},{{6581,6590},True},{{6591,6600},False},{{6601,6610},False},{{6611,6620},True},{{6621,6630},False},{{6631,6640},False},{{6641,6650},True},{{6651,6660},True},{{6661,6670},True},{{6671,6680},False},{{6681,6690},True},{{6691,6700},False},{{6701,6710},True},{{6711,6720},True},{{6721,6730},True},{{6731,6740},True},{{6741,6750},False},{{6751,6760},True},{{6761,6770},False},{{6771,6780},True},{{6781,6790},True},{{6791,6800},False},{{6801,6810},False},{{6811,6820},False},{{6821,6830},True},{{6831,6840},True},{{6841,6850},True},{{6851,6860},True},{{6861,6870},True},{{6871,6880},False},{{6881,6890},True},{{6891,6900},True},{{6901,6910},True},{{6911,6920},True},{{6921,6930},False},{{6931,6940},False},{{6941,6950},True},{{6951,6960},False},{{6961,6970},True},{{6971,6980},True},{{6981,6990},True},{{6991,7000},False},{{7001,7010},False},{{7011,7020},False},{{7021,7030},False},{{7031,7040},False},{{7041,7050},False},{{7051,7060},True},{{7061,7070},False},{{7071,7080},True},{{7081,7090},True},{{7091,7100},False},{{7101,7110},False},{{7111,7120},True},{{7121,7130},True},{{7131,7140},True},{{7141,7150},False},{{7151,7160},True},{{7161,7170},False},{{7171,7180},False},{{7181,7190},True},{{7191,7200},True},{{7201,7210},True},{{7211,7220},True},{{7221,7230},False},{{7231,7240},True},{{7241,7250},False},{{7251,7260},True},{{7261,7270},True},{{7271,7280},False},{{7281,7290},True},{{7291,7300},True},{{7301,7310},True},{{7311,7320},False},{{7321,7330},True},{{7331,7340},False},{{7341,7350},True},{{7351,7360},True},{{7361,7370},True},{{7371,7380},True},{{7381,7390},True},{{7391,7400},True},{{7401,7410},False},{{7411,7420},True},{{7421,7430},True},{{7431,7440},False},{{7441,7450},True},{{7451,7460},True},{{7461,7470},True},{{7471,7480},True},{{7481,7490},True},{{7491,7500},True},{{7501,7510},True},{{7511,7520},True},{{7521,7530},True},{{7531,7540},False},{{7541,7550},False},{{7551,7560},False},{{7561,7570},True},{{7571,7580},True},{{7581,7590},True},{{7591,7600},True},{{7601,7610},True},{{7611,7620},True},{{7621,7630},True},{{7631,7640},True},{{7641,7650},False},{{7651,7660},True},{{7661,7670},True},{{7671,7680},True},{{7681,7690},True},{{7691,7700},True},{{7701,7710},True},{{7711,7720},False},{{7721,7730},True},{{7731,7740},False},{{7741,7750},True},{{7751,7760},False},{{7761,7770},True},{{7771,7780},True},{{7781,7790},True},{{7791,7800},True},{{7801,7810},False},{{7811,7820},True},{{7821,7830},True},{{7831,7840},True},{{7841,7850},False},{{7851,7860},False},{{7861,7870},True},{{7871,7880},True},{{7881,7890},False},{{7891,7900},True},{{7901,7910},False},{{7911,7920},True},{{7921,7930},True},{{7931,7940},True},{{7941,7950},True},{{7951,7960},False},{{7961,7970},True},{{7971,7980},False},{{7981,7990},False},{{7991,8000},False},{{8001,8010},True},{{8011,8020},False},{{8021,8030},True},{{8031,8040},True},{{8041,8050},True},{{8051,8060},True},{{8061,8070},True},{{8071,8080},False},{{8081,8090},True},{{8091,8100},True},{{8101,8110},False},{{8111,8120},True},{{8121,8130},False},{{8131,8140},False},{{8141,8150},True},{{8151,8160},False},{{8161,8170},True},{{8171,8180},True},{{8181,8190},True},{{8191,8200},True},{{8201,8210},False},{{8211,8220},False},{{8221,8230},True},{{8231,8240},False},{{8241,8250},False},{{8251,8260},True},{{8261,8270},True},{{8271,8280},True},{{8281,8290},False},{{8291,8300},True},{{8301,8310},False},{{8311,8320},False},{{8321,8330},True},{{8331,8340},True},{{8341,8350},False},{{8351,8360},True},{{8361,8370},True},{{8371,8380},True},{{8381,8390},True},{{8391,8400},False},{{8401,8410},True},{{8411,8420},True},{{8421,8430},True},{{8431,8440},False},{{8441,8450},False},{{8451,8460},True},{{8461,8470},True},{{8471,8480},False},{{8481,8490},False},{{8491,8500},True},{{8501,8510},False},{{8511,8520},True},{{8521,8530},False},{{8531,8540},True},{{8541,8550},True},{{8551,8560},False},{{8561,8570},True},{{8571,8580},True},{{8581,8590},True},{{8591,8600},False},{{8601,8610},True},{{8611,8620},True},{{8621,8630},False},{{8631,8640},False},{{8641,8650},True},{{8651,8660},True},{{8661,8670},True},{{8671,8680},False},{{8681,8690},False},{{8691,8700},True},{{8701,8710},True},{{8711,8720},True},{{8721,8730},True},{{8731,8740},True},{{8741,8750},True},{{8751,8760},True},{{8761,8770},False},{{8771,8780},False},{{8781,8790},False},{{8791,8800},True},{{8801,8810},False},{{8811,8820},False},{{8821,8830},False},{{8831,8840},False},{{8841,8850},True},{{8851,8860},True},{{8861,8870},False},{{8871,8880},True},{{8881,8890},False},{{8891,8900},False},{{8901,8910},False},{{8911,8920},True},{{8921,8930},True},{{8931,8940},True},{{8941,8950},True},{{8951,8960},False},{{8961,8970},True},{{8971,8980},False},{{8981,8990},True},{{8991,9000},True},{{9001,9010},False},{{9011,9020},True},{{9021,9030},True},{{9031,9040},True},{{9041,9050},False},{{9051,9060},True},{{9061,9070},True},{{9071,9080},True},{{9081,9090},True},{{9091,9100},False},{{9101,9110},True},{{9111,9120},True},{{9121,9130},False},{{9131,9140},True},{{9141,9150},True},{{9151,9160},True},{{9161,9170},True},{{9171,9180},False},{{9181,9190},False},{{9191,9200},False},{{9201,9210},True},{{9211,9220},True},{{9221,9230},True},{{9231,9240},True},{{9241,9250},True},{{9251,9260},True},{{9261,9270},True},{{9271,9280},False},{{9281,9290},True},{{9291,9300},True},{{9301,9310},True},{{9311,9320},False},{{9321,9330},False},{{9331,9340},False},{{9341,9350},True},{{9351,9360},True},{{9361,9370},True},{{9371,9380},True},{{9381,9390},True},{{9391,9400},True},{{9401,9410},True},{{9411,9420},True},{{9421,9430},False},{{9431,9440},True},{{9441,9450},True},{{9451,9460},True},{{9461,9470},True},{{9471,9480},False},{{9481,9490},True},{{9491,9500},True},{{9501,9510},False},{{9511,9520},False},{{9521,9530},True},{{9531,9540},True},{{9541,9550},False},{{9551,9560},True},{{9561,9570},True},{{9571,9580},True},{{9581,9590},False},{{9591,9600},False},{{9601,9610},True},{{9611,9620},True},{{9621,9630},True},{{9631,9640},False},{{9641,9650},False},{{9651,9660},True},{{9661,9670},True},{{9671,9680},True},{{9681,9690},True},{{9691,9700},True},{{9701,9710},True},{{9711,9720},True},{{9721,9730},True},{{9731,9740},False},{{9741,9750},True},{{9751,9760},False},{{9761,9770},True},{{9771,9780},True},{{9781,9790},True},{{9791,9800},True},{{9801,9810},True},{{9811,9820},False},{{9821,9830},True},{{9831,9840},True},{{9841,9850},False},{{9851,9860},True},{{9861,9870},True},{{9871,9880},False},{{9881,9890},True},{{9891,9900},True},{{9901,9910},True},{{9911,9920},True},{{9921,9930},True},{{9931,9940},True},{{9941,9950},True},{{9951,9960},True},{{9961,9970},True},{{9971,9980},True},{{9981,9990},True},{{9991,10000},True}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-8-20 15:06:46 | 显示全部楼层
zeroieme 发表于 2017-8-20 14:52
{{{1,10},False},{{11,20},True},{{21,30},False},{{31,40},True},{{41,50},True},{{51,60},True},{{61,70} ...

谢谢你的编程解答:这么多的否定,但这不是我的题目,

—— 我反而不明白,有几本数论书都是这样介绍的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-8-20 15:16:56 | 显示全部楼层
zeroieme 发表于 2017-8-20 14:52
{{{1,10},False},{{11,20},True},{{21,30},False},{{31,40},True},{{41,50},True},{{51,60},True},{{61,70} ...

我再看准书上是这样说的:平均每隔10位数,

唉,平均 一词,模棱两可,,—— 不确切!

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-8-20 15:34:26 | 显示全部楼层
本帖最后由 蔡家雄 于 2017-8-20 15:36 编辑

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
回复

使用道具 举报

 楼主| 发表于 2017-8-20 15:44:03 | 显示全部楼层
蔡家雄 发表于 2017-8-20 15:34
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

有时,隔 30 个,还没有重合,书上居然说,

至今,既未被证明,也未被否证,

因为,“平均”一词 模棱两可。



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-8-20 17:35:26 | 显示全部楼层
蔡家雄 发表于 2017-8-20 15:06
谢谢你的编程解答:这么多的否定,但这不是我的题目,

—— 我反而不明白,有几本数论书都是这样介绍 ...


其实就是说e与pi 还没被证明是10进制下的 正规数 https://zh.wikipedia.org/wiki/%E6%AD%A3%E8%A7%84%E6%95%B0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-8-21 12:59:16 | 显示全部楼层
zeroieme 发表于 2017-8-20 17:35
其实就是说e与pi 还没被证明是10进制下的 正规数 https://zh.wikipedia.org/wiki/%E6%AD%A3%E8%A7%84%E ...

我的看法:此二数

在任意 b 进制 依然还是:

无限 不循环的!



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-8-21 13:42:02 | 显示全部楼层
zeroieme 发表于 2017-8-20 17:35
其实就是说e与pi 还没被证明是10进制下的 正规数 https://zh.wikipedia.org/wiki/%E6%AD%A3%E8%A7%84%E ...

请教大师:

√2 是 正规数 吗?

√3 是 正规数 吗?

√5 是 正规数 吗?



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-6-25 05:35 , Processed in 0.057975 second(s), 16 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表