找回密码
 欢迎注册
楼主: medie2005

[讨论] 阶乘和圆周率

  [复制链接]
发表于 2008-12-5 10:44:01 | 显示全部楼层
乘法运算精度损失不高的. 而使用Stirling公式计算n!,同样有效精度损失也会很低的,最主要问题来自公式本身,可能需要多取几项余项
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 10:58:12 | 显示全部楼层
由于 Prelude> log(3.1415926)/log(10) 0.4971498652858686 Prelude> log(3.1415927)/log(10) 0.4971498791098912 所以我们只需要搜索log(n!)/log(10)的尾数在 0.497149865和0.497149880之间的所有n就可以了。 对于搜索这个范围内的所有n,如果采用Stiring公式,那么double类型数据足够了。然后我们对它们逐一进行验算就可以了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 12:56:27 | 显示全部楼层
关键是Striling公式其误差公式是?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 12:57:15 | 显示全部楼层
呵呵 用Haskell解这个问题可就简单了 不过Haskell的高精度浮点库要另外安装·
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 13:00:29 | 显示全部楼层
http://zh.wikipedia.org/wiki/%E6%96%AF%E7%89%B9%E6%9E%97%E5%85%AC%E5%BC%8F 上面的链接有更详细的公式样式和误差分析
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 13:04:50 | 显示全部楼层
对于比较大的n,使用stirling级数精度可以达到非常之高: $ln\Gamma(z)=1/2ln(2\pi)+(z-1/2)ln(z)-z+\sum_{n=1}^{infty}\frac{B_{2n}}{2n(2n-1)z^{2n-1}}$ $=1/2ln(2\pi)+(z-1/2)ln(z)-z+1/{12z}-1/{360z^3}+1/{1260z^5}-...$ 其中$B_{2n}$为贝努利数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 13:05:44 | 显示全部楼层
因为double型数可精确到15-16位有小数字,如果斯特林公式是精确的,使用斯特林公式来计算log10(n!) 可精确到15-16位有效数字,而这15-16位有效数字又分成整数部分和小数部分,现在的要求尾数(小数部分必须达到8位),那么整数部分至多就不能超过7位了,所有当n!大于$10^7$时,就无法使用double型来估算了,必须采用更高的精度。 而 斯特林公式(一阶形式 )的精度有这样的特点,当n很大时,精度较高,当n较小时,精度较低。而n很大时,又会挤占小数部分的精度。故处于一个两难的境地。所以我们只能采用斯特林公式的高阶形式,在n不太大的时候来求解。当n很大时,double 型数就不行了,必须采用更高的精度。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 13:07:08 | 显示全部楼层
比如现在$n>10^5$,那么取到$1/{12z}$这一项以后,误差将小于$1/{360z^3}<10^-17$,其中$z=n+1$,精度已经超过double可以表达的范围了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 13:15:04 | 显示全部楼层
原帖由 liangbch 于 2008-12-5 13:05 发表 因为double型数可精确到15-16位有小数字,如果斯特林是精确的,使用斯特林公式来计算log10(n!) 可精确到15-16位有效数字,而这15-16位有效数字又分成整数部分和小数部分,现在的要求尾数(小数部分必须达到8位),那 ...
其实主要问题在于计算${z\lg(z)$的小数部分。这个我觉得可以在算出$z\lg(z)$一个近似值u以后,可以通过迭代 $d=d-\frac{10^{d/z}-z*10^{-u/z}}{ln(10)10^{d/z}-10^{-u/z}}$ 来求出d的比较精确的值(取$d_0=0$),其中对于分子,应该需要进行泰勒展开
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-12-5 13:27:42 | 显示全部楼层
开始记录结果 d = 3, n = 9 d = 31, n = 62 d = 314, n = 62 d = 3141, n = 10044 d =31415, n = 50583 d = 314159, n = 1490717 d = 3141592, n = 5573998 开始数字是3141592381 d = 31415926, n = 65630447 开始数字是3141592602 d = 314159265, n = 688395641 开始数字3141592651957527 d = 3141592653, n = 5777940569 起始数字314159265301 d = 31415926535, n = 77773146302, 开始 数字314159265353488 d = 314159265358, n = 1154318938997开始数字3141592653584138 d = 3141592653589, n = 1544607046599开始数字31415926535899498
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 16:11 , Processed in 0.032336 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表