找回密码
 欢迎注册
楼主: hujunhua

[原创] 三角形中三联等圆交于外心

[复制链接]
 楼主| 发表于 2023-7-21 20:24:39 | 显示全部楼层
hejoseph 发表于 2023-7-21 11:36
已知 △ABC 以及三个角α、β、γ,其中 α+β+γ=π,求作一点 P,使其到直线 BC、CA、AB 的垂足D、E、F满 ...

“作一个已知形状的三角形,使其顶点落在三条给定的直线上”比其对偶问题
“作一个已知形状的三角形,使其三边所在直线经过给定三点”
好像要麻烦一点。并且前者可以从后者得到解决。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-7-22 06:31:50 | 显示全部楼层
对于楼主首页问题,可用复平面解析方法证明,程序代码见
http://kuing.infinityfreeapp.com ... amp;extra=#pid55264

点评

nyy
你逼我牛逼,我搞不定这个问题  发表于 2023-7-24 09:56
nyy
http://kuing.infinityfreeapp.com/forum.php?mod=redirect&goto=findpost&ptid=11171&pid=55264  发表于 2023-7-24 09:55
nyy
链接不够精确,我帮你改进了一下  发表于 2023-7-24 09:55
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-7-24 09:54:29 | 显示全部楼层
TSC999 发表于 2023-7-22 06:31
对于楼主首页问题,可用复平面解析方法证明,程序代码见
http://kuing.infinityfreeapp.com/forum.php?mod ...

http://kuing.infinityfreeapp.com ... 11171&pid=55264

20楼才是你的代码,我把20楼的精确链接给你复制过来了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-7-24 10:45:22 | 显示全部楼层
本帖最后由 hejoseph 于 2023-7-24 17:31 编辑

作图问题是这样得到的:若点 \(D\)、\(E\)、\(F\) 分别在直线 \(BC\)、\(CA\)、\(AB\) 上,且 \(\triangle DEF\) 的三个内角是固定的已知值,\(\odot AEF\)、\(\odot BFD\)、\(\odot CDE\) 共点于 \(P\),那么点 \(P\) 是一个定点,与点 \(D\)、\(E\)、\(F\) 的位置无关。若点 \(D\)、\(E\)、\(F\) 共线,那么点 \(P\) 必定在 \(\triangle ABC\) 的外接圆上,这也是 Simson 定理的逆定理。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-8-8 11:49:38 | 显示全部楼层
这命题推广到四面体能成立吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-4-5 10:14:03 | 显示全部楼层
为了让alphageometry也参与贡献。咱们翻译一下老胡的题目,先做一个圆$O$,在其上任取三点$O_1, O_2,O_3$,记三个圆两两相交的其他交点分别是$D,E,F$,也就是$O_1,O_2$交于$O,F$,$O_1,O_3$交于$O,E$,$O_2,O_3$交于$O,D$
设圆$O_1$上的自由点是$A$,那么$AF$交圆$O_2$于$B$,$AE$交圆$O_3$于$C$,那么就是要证明$B,D,C$共线,且$OA=OB=OC$。 geogebra按照上面的描述画的图
Screenshot_20240405_102102.png
翻译成alphageometry的命题陈述的语法就是两个命题:
  1. o = free; o1 = free; a = on_circle a o1 o; o2 = on_circle o2 o o1; f = on_circle f o1 o, on_circle f o2 o; o3 = on_circle o3 o o1; e = on_circle e o1 o, on_circle e o3 o; d = on_circle d o2 o, on_circle d o3 o; b = on_line b a f, on_circle b o2 o; c = on_line c a e, on_circle c o3 e ? coll b c d
复制代码

  1. o = free; o1 = free; a = on_circle a o1 o; o2 = on_circle o2 o o1; f = on_circle f o1 o, on_circle f o2 o; o3 = on_circle o3 o o1; e = on_circle e o1 o, on_circle e o3 o; d = on_circle d o2 o, on_circle d o3 o; b = on_line b a f, on_circle b o2 o; c = on_line c a e, on_circle c o3 e ? cong o a o b o c
复制代码


然后输出的人类可读的证明如下:

证明输入的那个图里的$B,D,C$共线
alphageometry的输出图形把输入命题的点都重置了。重新标记了,如图:
Figure_1.png

  1. ==========================
  2. * From theorem premises:
  3. A B C D E F G H I J : Points
  4. BC = BA [00]
  5. BE = BA [01]
  6. DE = DA [02]
  7. FG = FA [03]
  8. BG = BA [04]
  9. FH = FA [05]
  10. DH = DA [06]
  11. DI = DA [07]
  12. I,C,E are collinear [08]
  13. FJ = FG [09]
  14. C,J,G are collinear [10]

  15. * Auxiliary Constructions:
  16. : Points


  17. * Proof steps:
  18. 001. FG = FA [03] & FJ = FG [09] & FH = FA [05] ⇒  H,A,J,G are concyclic [11]
  19. 002. H,A,J,G are concyclic [11] ⇒  ∠HAG = ∠HJG [12]
  20. 003. BC = BA [00] & BG = BA [04] & BE = BA [01] ⇒  A,C,E,G are concyclic [13]
  21. 004. A,C,E,G are concyclic [13] ⇒  ∠CEA = ∠CGA [14]
  22. 005. DE = DA [02] & DI = DA [07] & DH = DA [06] ⇒  H,A,I,E are concyclic [15]
  23. 006. H,A,I,E are concyclic [15] ⇒  ∠HAE = ∠HIE [16]
  24. 007. ∠HAG = ∠HJG [12] & C,J,G are collinear [10] & ∠CEA = ∠CGA [14] & ∠HAE = ∠HIE [16] & I,C,E are collinear [08] ⇒  ∠IHA = ∠JHA [17]
  25. 008. ∠IHA = ∠JHA [17] ⇒  HI ∥ HJ [18]
  26. 009. HI ∥ HJ [18] ⇒  H,I,J are collinear
  27. ==========================
复制代码


再让他证明输入图的$OA = OB$,如下(alphageometry的输出图形把输入命题的点都重置了。重新标记了)
Figure_2.png
  1. ==========================
  2. * From theorem premises:
  3. A B C D E I : Points
  4. BC = BA [00]
  5. AD = AB [01]
  6. DE = DA [02]
  7. BE = BA [03]
  8. I,E,C are collinear [04]
  9. DI = DA [05]

  10. * Auxiliary Constructions:
  11. F G H : Points
  12. AF = AB [06]
  13. BG = BA [07]
  14. FG = FA [08]
  15. DH = DA [09]
  16. FH = FA [10]

  17. * Proof steps:
  18. 001. BG = BA [07] & AF = AB [06] & FG = FA [08] ⇒  GF = GB [11]
  19. 002. AF = AB [06] & GF = GB [11] ⇒  BF ⟂ AG [12]
  20. 003. AF = AB [06] & AD = AB [01] ⇒  AD = AF [13]
  21. 004. DH = DA [09] & AD = AB [01] & AF = AB [06] & FH = FA [10] ⇒  HF = HD [14]
  22. 005. AD = AF [13] & HF = HD [14] ⇒  DF ⟂ AH [15]
  23. 006. BF ⟂ AG [12] & DF ⟂ AH [15] ⇒  ∠(BF-AG) = ∠(AH-DF) [16]
  24. 007. FG = FA [08] & AF = AB [06] ⇒  AB = GF [17]
  25. 008. AD = AB [01] & DE = DA [02] ⇒  AB = ED [18]
  26. 009. AB = GF [17] & AB = ED [18] ⇒  DE = GF [19]
  27. 010. BG = BA [07] & AF = AB [06] ⇒  FA = BG [20]
  28. 011. AB = GF [17] & FA = BG [20] (SSS)⇒  AB ∥ FG [21]
  29. 012. BE = BA [03] & AD = AB [01] ⇒  AD = EB [22]
  30. 013. DE = BA [18] & AD = EB [22] (SSS)⇒  DE ∥ AB [23]
  31. 014. AB ∥ FG [21] & DE ∥ AB [23] ⇒  ∠DEF = ∠GFE [24]
  32. 015. DE = GF [19] & ∠DEF = ∠GFE [24] (SAS)⇒  ∠(DE-FG) = ∠(DF-EG) [25]
  33. 016. ∠(BF-AG) = ∠(AH-DF) [16] & ∠(DE-FG) = ∠(DF-EG) [25] & AB ∥ FG [21] & DE ∥ AB [23] ⇒  ∠(FB-AG) = ∠(AH-GE) [26]
  34. 017. DH = DA [09] & DI = DA [05] & DE = DA [02] ⇒  H,A,E,I are concyclic [27]
  35. 018. H,A,E,I are concyclic [27] ⇒  ∠HAI = ∠HEI [28]
  36. 019. DH = DA [09] & AD = AB [01] & AF = AB [06] ⇒  AF = HD [29]
  37. 020. FH = FA [10] & AF = AB [06] & AD = AB [01] ⇒  DA = FH [30]
  38. 021. DA = FH [30] & AF = HD [29] (SSS)⇒  AF ∥ DH [31]
  39. 022. AF ∥ DH [31] & DE ∥ AB [23] ⇒  ∠EDH = ∠BAF [32]
  40. 023. DE = BA [18] & AF = HD [29] & ∠EDH = ∠BAF [32] (SAS)⇒  ∠(DE-AB) = ∠(EH-BF) [33]
  41. 024. I,E,C are collinear [04] & ∠HAI = ∠HEI [28] & ∠(DE-AB) = ∠(EH-BF) [33] & DE ∥ AB [23] ⇒  ∠HAI = ∠(FB-IE) [34]
  42. 025. ∠(FB-AG) = ∠(AH-GE) [26] & ∠HAI = ∠(FB-IE) [34] ⇒  ∠(GE-IA) = ∠(AG-IE) [35]
  43. 026. BE = BA [03] & BG = BA [07] & BC = BA [00] ⇒  A,E,G,C are concyclic [36]
  44. 027. A,E,G,C are concyclic [36] ⇒  ∠AGE = ∠ACE [37]
  45. 028. I,E,C are collinear [04] & ∠(GE-IA) = ∠(AG-IE) [35] & ∠AGE = ∠ACE [37] ⇒  ∠ACI = ∠CIA [38]
  46. 029. ∠ACI = ∠CIA [38] ⇒  AC = AI
  47. ==========================
复制代码

hu3.ggb

58.97 KB, 下载次数: 0, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

点评

alphageometry把输入的点的名称重新标记了。然后 我重新跑了一下,输出的图 贴上去了  发表于 2024-4-5 17:36
BC=BA也不对  发表于 2024-4-5 13:18
点H,I哪里来的?  发表于 2024-4-5 13:16
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 15:55 , Processed in 0.026507 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表