- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 22688
- 在线时间
- 小时
|
发表于 2024-4-5 10:14:03
|
显示全部楼层
为了让alphageometry也参与贡献。咱们翻译一下老胡的题目,先做一个圆$O$,在其上任取三点$O_1, O_2,O_3$,记三个圆两两相交的其他交点分别是$D,E,F$,也就是$O_1,O_2$交于$O,F$,$O_1,O_3$交于$O,E$,$O_2,O_3$交于$O,D$
设圆$O_1$上的自由点是$A$,那么$AF$交圆$O_2$于$B$,$AE$交圆$O_3$于$C$,那么就是要证明$B,D,C$共线,且$OA=OB=OC$。 geogebra按照上面的描述画的图
翻译成alphageometry的命题陈述的语法就是两个命题:
- o = free; o1 = free; a = on_circle a o1 o; o2 = on_circle o2 o o1; f = on_circle f o1 o, on_circle f o2 o; o3 = on_circle o3 o o1; e = on_circle e o1 o, on_circle e o3 o; d = on_circle d o2 o, on_circle d o3 o; b = on_line b a f, on_circle b o2 o; c = on_line c a e, on_circle c o3 e ? coll b c d
复制代码
- o = free; o1 = free; a = on_circle a o1 o; o2 = on_circle o2 o o1; f = on_circle f o1 o, on_circle f o2 o; o3 = on_circle o3 o o1; e = on_circle e o1 o, on_circle e o3 o; d = on_circle d o2 o, on_circle d o3 o; b = on_line b a f, on_circle b o2 o; c = on_line c a e, on_circle c o3 e ? cong o a o b o c
复制代码
然后输出的人类可读的证明如下:
证明输入的那个图里的$B,D,C$共线
alphageometry的输出图形把输入命题的点都重置了。重新标记了,如图:
- ==========================
- * From theorem premises:
- A B C D E F G H I J : Points
- BC = BA [00]
- BE = BA [01]
- DE = DA [02]
- FG = FA [03]
- BG = BA [04]
- FH = FA [05]
- DH = DA [06]
- DI = DA [07]
- I,C,E are collinear [08]
- FJ = FG [09]
- C,J,G are collinear [10]
- * Auxiliary Constructions:
- : Points
- * Proof steps:
- 001. FG = FA [03] & FJ = FG [09] & FH = FA [05] ⇒ H,A,J,G are concyclic [11]
- 002. H,A,J,G are concyclic [11] ⇒ ∠HAG = ∠HJG [12]
- 003. BC = BA [00] & BG = BA [04] & BE = BA [01] ⇒ A,C,E,G are concyclic [13]
- 004. A,C,E,G are concyclic [13] ⇒ ∠CEA = ∠CGA [14]
- 005. DE = DA [02] & DI = DA [07] & DH = DA [06] ⇒ H,A,I,E are concyclic [15]
- 006. H,A,I,E are concyclic [15] ⇒ ∠HAE = ∠HIE [16]
- 007. ∠HAG = ∠HJG [12] & C,J,G are collinear [10] & ∠CEA = ∠CGA [14] & ∠HAE = ∠HIE [16] & I,C,E are collinear [08] ⇒ ∠IHA = ∠JHA [17]
- 008. ∠IHA = ∠JHA [17] ⇒ HI ∥ HJ [18]
- 009. HI ∥ HJ [18] ⇒ H,I,J are collinear
- ==========================
复制代码
再让他证明输入图的$OA = OB$,如下(alphageometry的输出图形把输入命题的点都重置了。重新标记了)
- ==========================
- * From theorem premises:
- A B C D E I : Points
- BC = BA [00]
- AD = AB [01]
- DE = DA [02]
- BE = BA [03]
- I,E,C are collinear [04]
- DI = DA [05]
- * Auxiliary Constructions:
- F G H : Points
- AF = AB [06]
- BG = BA [07]
- FG = FA [08]
- DH = DA [09]
- FH = FA [10]
- * Proof steps:
- 001. BG = BA [07] & AF = AB [06] & FG = FA [08] ⇒ GF = GB [11]
- 002. AF = AB [06] & GF = GB [11] ⇒ BF ⟂ AG [12]
- 003. AF = AB [06] & AD = AB [01] ⇒ AD = AF [13]
- 004. DH = DA [09] & AD = AB [01] & AF = AB [06] & FH = FA [10] ⇒ HF = HD [14]
- 005. AD = AF [13] & HF = HD [14] ⇒ DF ⟂ AH [15]
- 006. BF ⟂ AG [12] & DF ⟂ AH [15] ⇒ ∠(BF-AG) = ∠(AH-DF) [16]
- 007. FG = FA [08] & AF = AB [06] ⇒ AB = GF [17]
- 008. AD = AB [01] & DE = DA [02] ⇒ AB = ED [18]
- 009. AB = GF [17] & AB = ED [18] ⇒ DE = GF [19]
- 010. BG = BA [07] & AF = AB [06] ⇒ FA = BG [20]
- 011. AB = GF [17] & FA = BG [20] (SSS)⇒ AB ∥ FG [21]
- 012. BE = BA [03] & AD = AB [01] ⇒ AD = EB [22]
- 013. DE = BA [18] & AD = EB [22] (SSS)⇒ DE ∥ AB [23]
- 014. AB ∥ FG [21] & DE ∥ AB [23] ⇒ ∠DEF = ∠GFE [24]
- 015. DE = GF [19] & ∠DEF = ∠GFE [24] (SAS)⇒ ∠(DE-FG) = ∠(DF-EG) [25]
- 016. ∠(BF-AG) = ∠(AH-DF) [16] & ∠(DE-FG) = ∠(DF-EG) [25] & AB ∥ FG [21] & DE ∥ AB [23] ⇒ ∠(FB-AG) = ∠(AH-GE) [26]
- 017. DH = DA [09] & DI = DA [05] & DE = DA [02] ⇒ H,A,E,I are concyclic [27]
- 018. H,A,E,I are concyclic [27] ⇒ ∠HAI = ∠HEI [28]
- 019. DH = DA [09] & AD = AB [01] & AF = AB [06] ⇒ AF = HD [29]
- 020. FH = FA [10] & AF = AB [06] & AD = AB [01] ⇒ DA = FH [30]
- 021. DA = FH [30] & AF = HD [29] (SSS)⇒ AF ∥ DH [31]
- 022. AF ∥ DH [31] & DE ∥ AB [23] ⇒ ∠EDH = ∠BAF [32]
- 023. DE = BA [18] & AF = HD [29] & ∠EDH = ∠BAF [32] (SAS)⇒ ∠(DE-AB) = ∠(EH-BF) [33]
- 024. I,E,C are collinear [04] & ∠HAI = ∠HEI [28] & ∠(DE-AB) = ∠(EH-BF) [33] & DE ∥ AB [23] ⇒ ∠HAI = ∠(FB-IE) [34]
- 025. ∠(FB-AG) = ∠(AH-GE) [26] & ∠HAI = ∠(FB-IE) [34] ⇒ ∠(GE-IA) = ∠(AG-IE) [35]
- 026. BE = BA [03] & BG = BA [07] & BC = BA [00] ⇒ A,E,G,C are concyclic [36]
- 027. A,E,G,C are concyclic [36] ⇒ ∠AGE = ∠ACE [37]
- 028. I,E,C are collinear [04] & ∠(GE-IA) = ∠(AG-IE) [35] & ∠AGE = ∠ACE [37] ⇒ ∠ACI = ∠CIA [38]
- 029. ∠ACI = ∠CIA [38] ⇒ AC = AI
- ==========================
复制代码 |
-
-
hu3.ggb
58.97 KB, 下载次数: 0, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次
|