找回密码
 欢迎注册
楼主: 菜菜根儿

[原创] 可以改变世界的直线S!!

[复制链接]
发表于 2008-11-4 12:48:32 | 显示全部楼层

回复 9# 菜菜根儿 的帖子

根据素数定理,如果某一范围内的素数与非素数各半, 那么这个范围将会很小很小,只要一一验证即可。 比如说依次试探 S=2、4、6、8、。。。 不过,当 S=2 时倒满足你的要求,但这样的特例显然毫无价值。 其实,其它的肯定无法满足要求, 因为0规定为非素数,其对应的偶数S必须得为素数,显然仅有 S=2 满足
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-11-4 14:52:06 | 显示全部楼层
谢谢GxQ!非常遗憾,不知怎样给您献鲜花? -------- 哪要是把非素数限定在奇数范围会怎样?
点相应帖子下面的“评分”选择相应的积分数目,再加上评语即可。
-- gxqcn
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-11-4 15:29:39 | 显示全部楼层

回复 10# 无心人 的帖子

理解正确! 因为m整数是假设出来的。在不违背大方向的前提下,可否对m整数的性质加以设计?安装一个足以击溃m的命门:即在0-m段的奇数点与m-2m段的对应奇数点的素性相反。 会有三种情况出现:1、0-m段的素数与m-2m段素数个数相等;2、0-m段的素数大于m-2m段素数个数;3、0-m段的素数小于m-2m段素的数个数。 ....... 这样,我在7#的帖子的思路会不会有解呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-11-8 11:16:13 | 显示全部楼层
我觉得按你的思路 除非动用解析方法 否则你很难得到否定的结论 毕竟这个问题是个世界难题 另外,不见得别人没想过 我还怀疑倒来倒去 还不如筛法 而筛法已经被怀疑无法解决这个问题了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-11-10 10:20:12 | 显示全部楼层
谢谢您的关注与热心! 论坛需要热心肠!!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 11:16 , Processed in 0.022627 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表