- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149497
- 在线时间
- 小时
|
楼主 |
发表于 2018-3-22 16:50:28
|
显示全部楼层
本帖最后由 mathematica 于 2018-3-22 16:51 编辑
- Clear["Global`*"];(*Clear all variables*)
- FullSimplify@Solve[
- a+b==4&&
- c+d==3&&
- e+f==5&&
- b^2+c^2==a^2&&(*勾股定理或者余弦定理*)
- (a^2+f^2-g^2)/(2*a*f)==4/5&&(*余弦定理*)
- (d^2+e^2-f^2)/(2*d*e)==3/5&&(*余弦定理*)
- a>=0&&
- b>=0&&
- c>=0&&
- d>=0&&
- e>=0&&
- f>=0&&
- g>=0
- ,
- {a,b,c,d,e,f}(*自变量*)
- ]
复制代码
查看共同定义域的最小值就可以了
\[\left\{\left\{a\to \text{ConditionalExpression}\left[\frac{1}{8} \left(\left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]-6\right) \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]+25\right),\frac{3}{2}<g<\frac{15}{8}\lor \frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],b\to \text{ConditionalExpression}\left[-\frac{1}{8} \left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]-7\right) \left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]+1\right),\frac{3}{2}<g<\frac{15}{8}\lor \frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],c\to \text{ConditionalExpression}\left[3-\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right],\frac{3}{2}<g<\frac{15}{8}\lor \frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],d\to \text{ConditionalExpression}\left[\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right],\frac{3}{2}<g<\frac{15}{8}\lor \frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],e\to \text{ConditionalExpression}\left[\frac{5 \left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]^2-25\right)}{6 \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]-50},\frac{3}{2}<g<\frac{15}{8}\lor \frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],f\to \text{ConditionalExpression}\left[\frac{5}{18} \left(-3 \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]+\frac{400}{25-3 \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,1\right]}-7\right),\frac{3}{2}<g<\frac{15}{8}\lor \frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right]\right\},\left\{a\to \text{ConditionalExpression}\left[\frac{1}{8} \left(\left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]-6\right) \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]+25\right),\frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],b\to \text{ConditionalExpression}\left[-\frac{1}{8} \left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]-7\right) \left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]+1\right),\frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],c\to \text{ConditionalExpression}\left[3-\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right],\frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],d\to \text{ConditionalExpression}\left[\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right],\frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],e\to \text{ConditionalExpression}\left[\frac{5 \left(\text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]^2-25\right)}{6 \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]-50},\frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right],f\to \text{ConditionalExpression}\left[\frac{5}{18} \left(-3 \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]+\frac{400}{25-3 \text{Root}\left[9 \text{$\#$1}^6-162 \text{$\#$1}^5+1647 \text{$\#$1}^4-10044 \text{$\#$1}^3+\left(41175-576 g^2\right) \text{$\#$1}^2+\left(9600 g^2-101250\right) \text{$\#$1}-40000 g^2+140625\&,2\right]}-7\right),\frac{15}{\sqrt{24 \sqrt{6}+59}}<g<\frac{3}{2}\right]\right\}\right\}\]
可知道结果是
\[\frac{15}{\sqrt{24 \sqrt{6}+59}}\] |
|